1#ifndef STAN_MATH_PRIM_PROB_LOGLOGISTIC_CDF_HPP
2#define STAN_MATH_PRIM_PROB_LOGLOGISTIC_CDF_HPP
43template <
typename T_y,
typename T_scale,
typename T_shape,
45 T_y, T_scale, T_shape>* =
nullptr>
48 const T_shape&
beta) {
54 static constexpr const char* function =
"loglogistic_cdf";
56 alpha,
"Shape parameter",
beta);
58 T_alpha_ref alpha_ref = alpha;
59 T_beta_ref beta_ref =
beta;
75 if (
sum(promote_scalar<int>(y_val == 0))) {
76 return ops_partials.build(0.0);
79 const auto& alpha_div_y
80 = to_ref_if<!is_constant_all<T_shape>::value>(alpha_val / y_val);
81 const auto& alpha_div_y_pow_beta
82 = to_ref_if<!is_constant_all<T_y, T_scale, T_shape>::value>(
83 pow(alpha_div_y, beta_val));
85 = to_ref_if<!is_constant_all<T_y, T_scale, T_shape>::value>(
86 1 / (1 + alpha_div_y_pow_beta));
88 T_partials_return cdf =
prod(prod_all);
91 const auto& prod_all_sq = to_ref_if<!is_constant_all<T_y>::value
95 const auto& cdf_div_elt = to_ref_if<!is_constant_all<T_y>::value
98 >= 2>(cdf / prod_all);
100 const auto& alpha_div_times_beta =
to_ref_if<
102 alpha_div_y_pow_beta * beta_val);
104 const auto& y_deriv = alpha_div_times_beta / y_val * prod_all_sq;
105 partials<0>(ops_partials) = y_deriv * cdf_div_elt;
108 const auto& alpha_deriv
109 = -alpha_div_times_beta / alpha_val * prod_all_sq;
110 partials<1>(ops_partials) = alpha_deriv * cdf_div_elt;
114 const auto& beta_deriv
115 = -
multiply_log(alpha_div_y_pow_beta, alpha_div_y) * prod_all_sq;
116 partials<2>(ops_partials) = beta_deriv * cdf_div_elt;
120 return ops_partials.build(cdf);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y, T_scale, T_shape > loglogistic_cdf(const T_y &y, const T_scale &alpha, const T_shape &beta)
The loglogistic cumulative distribution function for the specified scalar(s) given the specified scal...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
fvar< T > multiply_log(const fvar< T > &x1, const fvar< T > &x2)
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
value_type_t< T > prod(const T &m)
Calculates product of given kernel generator expression elements.
T to_ref_if(T &&a)
No-op that should be optimized away.
auto pow(const T1 &x1, const T2 &x2)
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > square(const fvar< T > &x)
typename ref_type_if< true, T >::type ref_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...