Automatic Differentiation
 
Loading...
Searching...
No Matches
loglogistic_cdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_LOGLOGISTIC_CDF_HPP
2#define STAN_MATH_PRIM_PROB_LOGLOGISTIC_CDF_HPP
3
18#include <cmath>
19#include <iostream>
20
21namespace stan {
22namespace math {
23
43template <typename T_y, typename T_scale, typename T_shape,
45 T_y, T_scale, T_shape>* = nullptr>
47 const T_y& y, const T_scale& alpha, const T_shape& beta) {
48 using T_partials_return = partials_return_t<T_y, T_scale, T_shape>;
49 using T_y_ref = ref_type_t<T_y>;
50 using T_alpha_ref = ref_type_t<T_scale>;
51 using T_beta_ref = ref_type_t<T_shape>;
52 using std::pow;
53 static constexpr const char* function = "loglogistic_cdf";
54 check_consistent_sizes(function, "Random variable", y, "Scale parameter",
55 alpha, "Shape parameter", beta);
56 T_y_ref y_ref = y;
57 T_alpha_ref alpha_ref = alpha;
58 T_beta_ref beta_ref = beta;
59
60 decltype(auto) y_val = to_ref(as_value_column_array_or_scalar(y_ref));
61 decltype(auto) alpha_val = to_ref(as_value_column_array_or_scalar(alpha_ref));
62 decltype(auto) beta_val = to_ref(as_value_column_array_or_scalar(beta_ref));
63
64 check_nonnegative(function, "Random variable", y_val);
65 check_positive_finite(function, "Scale parameter", alpha_val);
66 check_positive_finite(function, "Shape parameter", beta_val);
67
68 if (size_zero(y, alpha, beta)) {
69 return 1.0;
70 }
71
72 auto ops_partials = make_partials_propagator(y_ref, alpha_ref, beta_ref);
73
74 if (sum(promote_scalar<int>(y_val == 0))) {
75 return ops_partials.build(0.0);
76 }
77
78 const auto& alpha_div_y
79 = to_ref_if<is_autodiff_v<T_shape>>(alpha_val / y_val);
80 const auto& alpha_div_y_pow_beta
81 = to_ref_if<is_any_autodiff_v<T_y, T_scale, T_shape>>(
82 pow(alpha_div_y, beta_val));
83 const auto& prod_all = to_ref_if<is_any_autodiff_v<T_y, T_scale, T_shape>>(
84 1 / (1 + alpha_div_y_pow_beta));
85
86 T_partials_return cdf = prod(prod_all);
87
88 if constexpr (is_any_autodiff_v<T_y, T_scale, T_shape>) {
89 const auto& prod_all_sq = to_ref_if<
91 T_y> + is_autodiff_v<T_scale> + is_autodiff_v<T_shape> >= 2>(
92 square(prod_all));
93 const auto& cdf_div_elt = to_ref_if<
95 T_y> + is_autodiff_v<T_scale> + is_autodiff_v<T_shape> >= 2>(
96 cdf / prod_all);
97 if constexpr (is_any_autodiff_v<T_y, T_scale>) {
98 const auto& alpha_div_times_beta
99 = to_ref_if<is_autodiff_v<T_y> + is_autodiff_v<T_scale> == 2>(
100 alpha_div_y_pow_beta * beta_val);
101 if constexpr (is_autodiff_v<T_y>) {
102 const auto& y_deriv = alpha_div_times_beta / y_val * prod_all_sq;
103 partials<0>(ops_partials) = y_deriv * cdf_div_elt;
104 }
105 if constexpr (is_autodiff_v<T_scale>) {
106 const auto& alpha_deriv
107 = -alpha_div_times_beta / alpha_val * prod_all_sq;
108 partials<1>(ops_partials) = alpha_deriv * cdf_div_elt;
109 }
110 }
111 if constexpr (is_autodiff_v<T_shape>) {
112 const auto& beta_deriv
113 = -multiply_log(alpha_div_y_pow_beta, alpha_div_y) * prod_all_sq;
114 partials<2>(ops_partials) = beta_deriv * cdf_div_elt;
115 }
116 }
117
118 return ops_partials.build(cdf);
119}
120
121} // namespace math
122} // namespace stan
123#endif
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y, T_scale, T_shape > loglogistic_cdf(const T_y &y, const T_scale &alpha, const T_shape &beta)
The loglogistic cumulative distribution function for the specified scalar(s) given the specified scal...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
fvar< T > multiply_log(const fvar< T > &x1, const fvar< T > &x2)
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
value_type_t< T > prod(const T &m)
Calculates product of given kernel generator expression elements.
Definition prod.hpp:21
T to_ref_if(T &&a)
No-op that should be optimized away.
Definition to_ref.hpp:45
auto pow(const T1 &x1, const T2 &x2)
Definition pow.hpp:32
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
Definition to_ref.hpp:18
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > square(const fvar< T > &x)
Definition square.hpp:12
constexpr bool is_autodiff_v
typename ref_type_if< true, T >::type ref_type_t
Definition ref_type.hpp:56
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...