Automatic Differentiation
 
Loading...
Searching...
No Matches
inv_gamma_lcdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_INV_GAMMA_LCDF_HPP
2#define STAN_MATH_PRIM_PROB_INV_GAMMA_LCDF_HPP
3
19#include <cmath>
20
21namespace stan {
22namespace math {
23
24template <typename T_y, typename T_shape, typename T_scale>
26 const T_shape& alpha,
27 const T_scale& beta) {
28 using T_partials_return = partials_return_t<T_y, T_shape, T_scale>;
29 using T_y_ref = ref_type_t<T_y>;
30 using T_alpha_ref = ref_type_t<T_shape>;
31 using T_beta_ref = ref_type_t<T_scale>;
32 using std::exp;
33 using std::log;
34 using std::pow;
35 static constexpr const char* function = "inv_gamma_lcdf";
36 check_consistent_sizes(function, "Random variable", y, "Shape parameter",
37 alpha, "Scale Parameter", beta);
38
39 T_y_ref y_ref = y;
40 T_alpha_ref alpha_ref = alpha;
41 T_beta_ref beta_ref = beta;
42
43 check_positive_finite(function, "Shape parameter", alpha_ref);
44 check_positive_finite(function, "Scale parameter", beta_ref);
45 check_nonnegative(function, "Random variable", y_ref);
46
47 if (size_zero(y, alpha, beta)) {
48 return 0;
49 }
50
51 T_partials_return P(0.0);
52 auto ops_partials = make_partials_propagator(y_ref, alpha_ref, beta_ref);
53
54 scalar_seq_view<T_y_ref> y_vec(y_ref);
55 scalar_seq_view<T_alpha_ref> alpha_vec(alpha_ref);
56 scalar_seq_view<T_beta_ref> beta_vec(beta_ref);
57 size_t N = max_size(y, alpha, beta);
58
59 // Explicit return for extreme values
60 // The gradients are technically ill-defined, but treated as zero
61 for (size_t i = 0; i < stan::math::size(y); i++) {
62 if (y_vec.val(i) == 0) {
63 return ops_partials.build(negative_infinity());
64 }
65 }
66
67 VectorBuilder<!is_constant_all<T_shape>::value, T_partials_return, T_shape>
68 gamma_vec(math::size(alpha));
69 VectorBuilder<!is_constant_all<T_shape>::value, T_partials_return, T_shape>
70 digamma_vec(math::size(alpha));
71
73 for (size_t i = 0; i < stan::math::size(alpha); i++) {
74 const T_partials_return alpha_dbl = alpha_vec.val(i);
75 gamma_vec[i] = tgamma(alpha_dbl);
76 digamma_vec[i] = digamma(alpha_dbl);
77 }
78 }
79
80 for (size_t n = 0; n < N; n++) {
81 // Explicit results for extreme values
82 // The gradients are technically ill-defined, but treated as zero
83 if (y_vec.val(n) == INFTY) {
84 continue;
85 }
86
87 const T_partials_return y_dbl = y_vec.val(n);
88 const T_partials_return y_inv_dbl = 1.0 / y_dbl;
89 const T_partials_return alpha_dbl = alpha_vec.val(n);
90 const T_partials_return beta_dbl = beta_vec.val(n);
91
92 const T_partials_return Pn = gamma_q(alpha_dbl, beta_dbl * y_inv_dbl);
93
94 P += log(Pn);
95
97 partials<0>(ops_partials)[n] += beta_dbl * y_inv_dbl * y_inv_dbl
98 * exp(-beta_dbl * y_inv_dbl)
99 * pow(beta_dbl * y_inv_dbl, alpha_dbl - 1)
100 / tgamma(alpha_dbl) / Pn;
101 }
103 partials<1>(ops_partials)[n]
104 += grad_reg_inc_gamma(alpha_dbl, beta_dbl * y_inv_dbl, gamma_vec[n],
105 digamma_vec[n])
106 / Pn;
107 }
109 partials<2>(ops_partials)[n] += -y_inv_dbl * exp(-beta_dbl * y_inv_dbl)
110 * pow(beta_dbl * y_inv_dbl, alpha_dbl - 1)
111 / tgamma(alpha_dbl) / Pn;
112 }
113 }
114 return ops_partials.build(P);
115}
116
117} // namespace math
118} // namespace stan
119#endif
VectorBuilder allocates type T1 values to be used as intermediate values.
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
size_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
Definition size.hpp:18
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double negative_infinity()
Return negative infinity.
size_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:19
return_type_t< T_y, T_shape, T_scale > inv_gamma_lcdf(const T_y &y, const T_shape &alpha, const T_scale &beta)
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
fvar< T > log(const fvar< T > &x)
Definition log.hpp:15
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
return_type_t< T1, T2 > grad_reg_inc_gamma(T1 a, T2 z, T1 g, T1 dig, double precision=1e-6, int max_steps=1e5)
Gradient of the regularized incomplete gamma functions igamma(a, z)
fvar< T > pow(const fvar< T > &x1, const fvar< T > &x2)
Definition pow.hpp:19
fvar< T > tgamma(const fvar< T > &x)
Return the result of applying the gamma function to the specified argument.
Definition tgamma.hpp:21
fvar< T > gamma_q(const fvar< T > &x1, const fvar< T > &x2)
Definition gamma_q.hpp:14
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
static constexpr double INFTY
Positive infinity.
Definition constants.hpp:46
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
Definition digamma.hpp:23
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:13
typename ref_type_if< true, T >::type ref_type_t
Definition ref_type.hpp:55
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Definition fvar.hpp:9
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...