Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ gp_exponential_cov() [1/6]

template<typename T1 , typename T2 , typename T3 , require_all_kernel_expressions_and_none_scalar_t< T1 > * = nullptr, require_all_arithmetic_t< T2, T3 > * = nullptr>
matrix_cl< return_type_t< T1, T2, T3 > > stan::math::gp_exponential_cov ( const T1 &  x,
const T2  sigma,
const T3  length_scale 
)
inline

Matern exponential kernel on the GPU.

Squared exponential kernel on the GPU.

Template Parameters
T1Type of the matrix
T2Type of sigma
T3Type of length_scale
Parameters
xinput vector or matrix
sigmastandard deviation
length_scalelength scale
Returns
dot product covariance matrix that is positive semi-definite
Template Parameters
T1Type of the matrix
T2Type of sigma
T3Type of length_scale
Parameters
xinput vector or matrix
sigmastandard deviation
length_scalelength scale
Returns
Squared distance between elements of x.

Definition at line 29 of file gp_exponential_cov.hpp.