1#ifndef STAN_MATH_OPENCL_PRIM_GP_EXPONENTIAL_COV_HPP 
    2#define STAN_MATH_OPENCL_PRIM_GP_EXPONENTIAL_COV_HPP 
   10#include <CL/opencl.hpp> 
   26template <
typename T1, 
typename T2, 
typename T3,
 
   27          require_all_kernel_expressions_and_none_scalar_t<T1>* = 
nullptr,
 
   28          require_all_arithmetic_t<T2, T3>* = 
nullptr>
 
   30    const T1& x, 
const T2 sigma, 
const T3 length_scale) {
 
   31  const auto& x_eval = x.eval();
 
   34  int n_blocks = (x.cols() + block_size - 1) / block_size;
 
   35  int blocked_size = block_size * n_blocks;
 
   38                                       cl::NDRange(block_size, block_size),
 
   39                                       x_eval, res, sigma * sigma,
 
   40                                       -1.0 / length_scale, x.
cols(), x.rows());
 
   41  } 
catch (
const cl::Error& 
e) {
 
   64template <
typename T1, 
typename T2, 
typename T3, 
typename T4,
 
   68    const T1& x, 
const T2& y, 
const T3 sigma, 
const T4 length_scale) {
 
   71  const auto& x_eval = x.eval();
 
   72  const auto& y_eval = y.eval();
 
   74  int x_blocks = (x.cols() + block_size - 1) / block_size;
 
   75  int x_blocked_size = block_size * x_blocks;
 
   76  int y_blocks = (y.cols() + block_size - 1) / block_size;
 
   77  int y_blocked_size = block_size * y_blocks;
 
   80        cl::NDRange(x_blocked_size, y_blocked_size),
 
   81        cl::NDRange(block_size, block_size), x_eval, y_eval, res, sigma * sigma,
 
   82        -1.0 / length_scale, x.
cols(), y.cols(), x.rows());
 
   83  } 
catch (
const cl::Error& 
e) {
 
  101template <
typename T1, 
typename T2, 
typename T3,
 
  105    const T1& x, 
const T2 sigma, 
const T3 length_scale) {
 
  107  matrix_cl<return_type_t<T1, T2, T3>> res(x.cols(), x.cols());
 
  109  int n_blocks = (x.cols() + block_size - 1) / block_size;
 
  110  int blocked_size = block_size * n_blocks;
 
  113                                       cl::NDRange(block_size, block_size),
 
  114                                       x_eval, res, sigma * sigma, -1.0,
 
  116  } 
catch (
const cl::Error& 
e) {
 
  140    typename T1, 
typename T2, 
typename T3, 
typename T4,
 
  141    require_all_kernel_expressions_and_none_scalar_t<T1, T2, T4>* = 
nullptr,
 
  142    require_all_arithmetic_t<T3>* = 
nullptr>
 
  144    const T1& x, 
const T2& y, 
const T3 sigma, 
const T4 length_scale) {
 
  146  matrix_cl<return_type_t<T1, T2, T3, T4>> res(x.cols(), y.cols());
 
  150  int x_blocks = (x.cols() + block_size - 1) / block_size;
 
  151  int x_blocked_size = block_size * x_blocks;
 
  152  int y_blocks = (y.cols() + block_size - 1) / block_size;
 
  153  int y_blocked_size = block_size * y_blocks;
 
  156        cl::NDRange(x_blocked_size, y_blocked_size),
 
  157        cl::NDRange(block_size, block_size), x_eval, y_eval, res, sigma * sigma,
 
  158        -1.0, x.cols(), y.cols(), x.rows());
 
  159  } 
catch (
const cl::Error& 
e) {
 
Represents an arithmetic matrix on the OpenCL device.
 
require_all_t< std::is_arithmetic< std::decay_t< Types > >... > require_all_arithmetic_t
Require all of the types satisfy std::is_arithmetic.
 
void check_opencl_error(const char *function, const cl::Error &e)
Throws the domain error with specifying the OpenCL error that occurred.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
auto rowwise_broadcast(T &&a)
Broadcast an expression in rowwise dimmension.
 
require_all_t< is_kernel_expression_and_not_scalar< Types >... > require_all_kernel_expressions_and_none_scalar_t
Enables a template if all given types are non-scalar types that are a valid kernel generator expressi...
 
const kernel_cl< in_buffer, in_buffer, out_buffer, double, double, int, int, int > gp_exponential_cov_cross("gp_exponential_cov_cross", {gp_exponential_cov_cross_kernel_code})
See the docs for gp_exponential_cov_cross() .
 
const kernel_cl< in_buffer, out_buffer, double, double, int, int > gp_exponential_cov("gp_exponential_cov", {gp_exponential_cov_kernel_code})
See the docs for gp_exponential_cov() .
 
matrix_cl< return_type_t< T1, T2, T3 > > gp_exponential_cov(const T1 &x, const T2 sigma, const T3 length_scale)
Matern exponential kernel on the GPU.
 
static constexpr double e()
Return the base of the natural logarithm.
 
void check_size_match(const char *function, const char *name_i, T_size1 i, const char *name_j, T_size2 j)
Check if the provided sizes match.
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...