1#ifndef STAN_MATH_PRIM_PROB_GAMMA_LCCDF_HPP
2#define STAN_MATH_PRIM_PROB_GAMMA_LCCDF_HPP
24template <
typename T_y,
typename T_shape,
typename T_inv_scale>
26 const T_y& y,
const T_shape& alpha,
const T_inv_scale&
beta) {
34 static constexpr const char* function =
"gamma_lccdf";
36 alpha,
"Inverse scale parameter",
beta);
38 T_alpha_ref alpha_ref = alpha;
39 T_beta_ref beta_ref =
beta;
48 T_partials_return P(0.0);
59 if (y_vec.val(i) == 0) {
61 return ops_partials.build(0.0);
65 for (
size_t n = 0; n < N; n++) {
68 if (y_vec.val(n) ==
INFTY) {
73 const T_partials_return y_dbl = y_vec.val(n);
74 const T_partials_return alpha_dbl = alpha_vec.val(n);
75 const T_partials_return beta_dbl = beta_vec.val(n);
76 const T_partials_return beta_y_dbl = beta_dbl * y_dbl;
79 const T_partials_return Qn =
gamma_q(alpha_dbl, beta_y_dbl);
80 const T_partials_return log_Qn =
log(Qn);
84 if constexpr (is_any_autodiff_v<T_y, T_inv_scale>) {
85 const T_partials_return log_y_dbl =
log(y_dbl);
86 const T_partials_return log_beta_dbl =
log(beta_dbl);
87 const T_partials_return log_pdf
88 = alpha_dbl * log_beta_dbl -
lgamma(alpha_dbl)
89 + (alpha_dbl - 1.0) * log_y_dbl - beta_y_dbl;
90 const T_partials_return common_term =
exp(log_pdf - log_Qn);
92 if constexpr (is_autodiff_v<T_y>) {
94 partials<0>(ops_partials)[n] -= common_term;
96 if constexpr (is_autodiff_v<T_inv_scale>) {
98 partials<2>(ops_partials)[n] -= y_dbl / beta_dbl * common_term;
102 if constexpr (is_autodiff_v<T_shape>) {
103 const T_partials_return digamma_val =
digamma(alpha_dbl);
104 const T_partials_return gamma_val =
tgamma(alpha_dbl);
106 partials<1>(ops_partials)[n]
111 return ops_partials.build(P);
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
static constexpr double negative_infinity()
Return negative infinity.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
return_type_t< T_y, T_shape, T_inv_scale > gamma_lccdf(const T_y &y, const T_shape &alpha, const T_inv_scale &beta)
fvar< T > log(const fvar< T > &x)
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
return_type_t< T1, T2 > grad_reg_inc_gamma(T1 a, T2 z, T1 g, T1 dig, double precision=1e-6, int max_steps=1e5)
Gradient of the regularized incomplete gamma functions igamma(a, z)
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
fvar< T > tgamma(const fvar< T > &x)
Return the result of applying the gamma function to the specified argument.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > gamma_q(const fvar< T > &x1, const fvar< T > &x2)
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
static constexpr double INFTY
Positive infinity.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< true, T >::type ref_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...