Loading [MathJax]/extensions/TeX/AMSsymbols.js
Automatic Differentiation
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Loading...
Searching...
No Matches
dae.hpp File Reference

Go to the source code of this file.

Namespaces

namespace  stan
 The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation.
 
namespace  stan::math
 Matrices and templated mathematical functions.
 

Functions

template<typename F , typename T_yy , typename T_yp , typename... T_Args, require_all_eigen_col_vector_t< T_yy, T_yp > * = nullptr>
std::vector< Eigen::Matrix< stan::return_type_t< T_yy, T_yp, T_Args... >, -1, 1 > > stan::math::dae_tol_impl (const char *func, const F &f, const T_yy &yy0, const T_yp &yp0, double t0, const std::vector< double > &ts, double rtol, double atol, int64_t max_num_steps, std::ostream *msgs, const T_Args &... args)
 Solve the DAE initial value problem f(t, y, y')=0, y(t0) = yy0, y'(t0)=yp0 at a set of times, { t1, t2, t3, ... } using IDAS.
 
template<typename F , typename T_yy , typename T_yp , typename... T_Args, require_all_eigen_col_vector_t< T_yy, T_yp > * = nullptr>
std::vector< Eigen::Matrix< stan::return_type_t< T_yy, T_yp, T_Args... >, -1, 1 > > stan::math::dae_tol (const F &f, const T_yy &yy0, const T_yp &yp0, double t0, const std::vector< double > &ts, double rtol, double atol, int64_t max_num_steps, std::ostream *msgs, const T_Args &... args)
 Solve the DAE initial value problem f(t, y, y')=0, y(t0) = yy0, y'(t0)=yp0 at a set of times, { t1, t2, t3, ... } using IDAS.
 
template<typename F , typename T_yy , typename T_yp , typename... T_Args, require_all_eigen_col_vector_t< T_yy, T_yp > * = nullptr>
std::vector< Eigen::Matrix< stan::return_type_t< T_yy, T_yp, T_Args... >, -1, 1 > > stan::math::dae (const F &f, const T_yy &yy0, const T_yp &yp0, double t0, const std::vector< double > &ts, std::ostream *msgs, const T_Args &... args)
 Solve the DAE initial value problem f(t, y, y')=0, y(t0) = yy0, y'(t0)=yp0 at a set of times, { t1, t2, t3, ... } using IDAS, assuming default controls (relative tol, absolute tol, max number of steps) = (1.e-10, 1.e-10, 1e8).