1#ifndef STAN_MATH_PRIM_PROB_BETA_RNG_HPP
2#define STAN_MATH_PRIM_PROB_BETA_RNG_HPP
9#include <boost/random/gamma_distribution.hpp>
10#include <boost/random/uniform_real_distribution.hpp>
11#include <boost/random/variate_generator.hpp>
35template <
typename T_shape1,
typename T_shape2,
class RNG>
37 const T_shape1 &alpha,
const T_shape2 &
beta, RNG &rng) {
38 using boost::variate_generator;
39 using boost::random::gamma_distribution;
40 using boost::random::uniform_real_distribution;
43 static constexpr const char *function =
"beta_rng";
45 "Second shape Parameter",
beta);
46 T_alpha_ref alpha_ref = alpha;
47 T_beta_ref beta_ref =
beta;
56 variate_generator<RNG &, uniform_real_distribution<>>
uniform_rng(
57 rng, uniform_real_distribution<>(0.0, 1.0));
58 for (
size_t n = 0; n < N; ++n) {
62 if (alpha_vec[n] > 1.0 && beta_vec[n] > 1.0) {
63 variate_generator<RNG &, gamma_distribution<>> rng_gamma_alpha(
64 rng, gamma_distribution<>(alpha_vec[n], 1.0));
65 variate_generator<RNG &, gamma_distribution<>> rng_gamma_beta(
66 rng, gamma_distribution<>(beta_vec[n], 1.0));
67 double a = rng_gamma_alpha();
68 double b = rng_gamma_beta();
69 output[n] = a / (a + b);
71 variate_generator<RNG &, gamma_distribution<>> rng_gamma_alpha(
72 rng, gamma_distribution<>(alpha_vec[n] + 1, 1.0));
73 variate_generator<RNG &, gamma_distribution<>> rng_gamma_beta(
74 rng, gamma_distribution<>(beta_vec[n] + 1, 1.0));
75 double log_a = std::log(
uniform_rng()) / alpha_vec[n]
76 + std::log(rng_gamma_alpha());
78 = std::log(
uniform_rng()) / beta_vec[n] + std::log(rng_gamma_beta());
80 output[n] = std::exp(log_a - log_sum);
typename helper::type type
VectorBuilder allocates type T1 values to be used as intermediate values.
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
VectorBuilder< true, double, T_alpha, T_beta >::type uniform_rng(const T_alpha &alpha, const T_beta &beta, RNG &rng)
Return a uniform random variate for the given upper and lower bounds using the specified random numbe...
VectorBuilder< true, double, T_shape1, T_shape2 >::type beta_rng(const T_shape1 &alpha, const T_shape2 &beta, RNG &rng)
Return a Beta random variate with the supplied success and failure parameters using the given random ...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > log_sum_exp(const fvar< T > &x1, const fvar< T > &x2)
typename ref_type_if< true, T >::type ref_type_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...