1#ifndef STAN_MATH_PRIM_PROB_BETA_NEG_BINOMIAL_LCDF_HPP
2#define STAN_MATH_PRIM_PROB_BETA_NEG_BINOMIAL_LCDF_HPP
42template <
typename T_n,
typename T_r,
typename T_alpha,
typename T_beta>
44 const T_n& n,
const T_r& r,
const T_alpha& alpha,
const T_beta&
beta,
45 const double precision = 1
e-8,
const int max_steps = 1e8) {
46 static constexpr const char* function =
"beta_neg_binomial_lcdf";
48 function,
"Failures variable", n,
"Number of successes parameter", r,
49 "Prior success parameter", alpha,
"Prior failure parameter",
beta);
57 T_alpha_ref alpha_ref = alpha;
59 T_beta_ref beta_ref =
beta;
73 for (
int i = 0; i < size_n; i++) {
74 if (n_vec.val(i) < 0) {
80 T_partials_return log_cdf(0.0);
82 for (
size_t i = 0; i < max_size_seq_view; i++) {
85 if (n_vec.val(i) == std::numeric_limits<int>::max()) {
88 auto n_dbl = n_vec.val(i);
89 auto r_dbl = r_vec.val(i);
90 auto alpha_dbl = alpha_vec.val(i);
91 auto beta_dbl = beta_vec.val(i);
92 auto b_plus_n = beta_dbl + n_dbl;
93 auto r_plus_n = r_dbl + n_dbl;
94 auto a_plus_r = alpha_dbl + r_dbl;
95 using a_t =
return_type_t<
decltype(b_plus_n),
decltype(r_plus_n)>;
96 using b_t =
return_type_t<
decltype(n_dbl),
decltype(a_plus_r),
99 std::initializer_list<a_t>{1.0, b_plus_n + 1.0, r_plus_n + 1.0},
100 std::initializer_list<b_t>{n_dbl + 2.0, a_plus_r + b_plus_n + 1.0},
102 auto C =
lgamma(r_plus_n + 1.0) +
lbeta(a_plus_r, b_plus_n + 1.0)
105 log_cdf +=
log1m(ccdf);
108 auto chain_rule_term = -ccdf / (1.0 - ccdf);
109 auto digamma_n_r_alpha_beta =
digamma(a_plus_r + b_plus_n + 1.0);
110 T_partials_return dF[6];
112 false,
true,
false>(dF, 1.0, b_plus_n + 1.0, r_plus_n + 1.0,
113 n_dbl + 2.0, a_plus_r + b_plus_n + 1.0, 1.0,
114 precision, max_steps);
117 auto digamma_r_alpha =
digamma(a_plus_r);
119 auto partial_lccdf =
digamma(r_plus_n + 1.0)
120 + (digamma_r_alpha - digamma_n_r_alpha_beta)
121 + (dF[2] + dF[4]) / F -
digamma(r_dbl);
122 partials<0>(ops_partials)[i] += partial_lccdf * chain_rule_term;
125 auto partial_lccdf = digamma_r_alpha - digamma_n_r_alpha_beta
126 + dF[4] / F -
digamma(alpha_dbl);
127 partials<1>(ops_partials)[i] += partial_lccdf * chain_rule_term;
133 auto digamma_alpha_beta =
digamma(alpha_dbl + beta_dbl);
135 partials<1>(ops_partials)[i] += digamma_alpha_beta * chain_rule_term;
138 auto partial_lccdf =
digamma(b_plus_n + 1.0) - digamma_n_r_alpha_beta
139 + (dF[1] + dF[4]) / F
140 - (
digamma(beta_dbl) - digamma_alpha_beta);
141 partials<2>(ops_partials)[i] += partial_lccdf * chain_rule_term;
147 return ops_partials.build(log_cdf);
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
return_type_t< T_r, T_alpha, T_beta > beta_neg_binomial_lcdf(const T_n &n, const T_r &r, const T_alpha &alpha, const T_beta &beta, const double precision=1e-8, const int max_steps=1e8)
Returns the log CDF of the Beta-Negative Binomial distribution with given number of successes,...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
auto hypergeometric_3F2(const Ta &a, const Tb &b, const Tz &z)
Hypergeometric function (3F2).
static constexpr double negative_infinity()
Return negative infinity.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
static constexpr double e()
Return the base of the natural logarithm.
fvar< T > lbeta(const fvar< T > &x1, const fvar< T > &x2)
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > log1m(const fvar< T > &x)
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< true, T >::type ref_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...