15.8 Logistic Distribution
15.8.1 Probability Density Function
If \(\mu \in \mathbb{R}\) and \(\sigma \in \mathbb{R}^+\), then for \(y \in \mathbb{R}\), \[ \text{Logistic}(y|\mu,\sigma) = \frac{1}{\sigma} \ \exp\!\left( - \, \frac{y - \mu}{\sigma} \right) \ \left(1 + \exp \!\left( - \, \frac{y - \mu}{\sigma} \right) \right)^{\!-2} \! . \]
15.8.2 Sampling Statement
y ~
logistic
(mu, sigma)
Increment target log probability density with logistic_lpdf( y | mu, sigma)
dropping constant additive terms.
15.8.3 Stan Functions
real
logistic_lpdf
(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma
real
logistic_cdf
(reals y, reals mu, reals sigma)
The logistic cumulative distribution function of y given location mu
and scale sigma
real
logistic_lcdf
(reals y | reals mu, reals sigma)
The log of the logistic cumulative distribution function of y given
location mu and scale sigma
real
logistic_lccdf
(reals y | reals mu, reals sigma)
The log of the logistic complementary cumulative distribution function
of y given location mu and scale sigma
R
logistic_rng
(reals mu, reals sigma)
Generate a logistic variate with location mu and scale sigma; may only
be used in generated quantities block. For a description of argument
and return types, see section vectorized PRNG functions.