This is an old version, view current version.

16.4 Scaled Inverse Chi-Square Distribution

16.4.1 Probability Density Function

If νR+ and σR+, then for yR+, ScaledInvChiSquare(y|ν,σ)=(ν/2)ν/2Γ(ν/2)σνy(ν/2+1)exp(12νσ21y).

16.4.2 Sampling Statement

y ~ scaled_inv_chi_square(nu, sigma)

Increment target log probability density with scaled_inv_chi_square_lpdf( y | nu, sigma) dropping constant additive terms.

16.4.3 Stan Functions

real scaled_inv_chi_square_lpdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu and scale sigma

real scaled_inv_chi_square_cdf(reals y, reals nu, reals sigma)
The scaled inverse Chi-square cumulative distribution function of y given degrees of freedom nu and scale sigma

real scaled_inv_chi_square_lcdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square cumulative distribution function of y given degrees of freedom nu and scale sigma

real scaled_inv_chi_square_lccdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square complementary cumulative distribution function of y given degrees of freedom nu and scale sigma

R scaled_inv_chi_square_rng(reals nu, reals sigma)
Generate a scaled inverse Chi-squared variate with degrees of freedom nu and scale sigma; may only be used in generated quantities block. For a description of argument and return types, see section vectorized PRNG functions.