1#ifndef STAN_MATH_PRIM_FUN_POW_HPP
2#define STAN_MATH_PRIM_FUN_POW_HPP
26template <
typename U,
typename V>
43template <
typename T1,
typename T2, require_all_arithmetic_t<T1, T2>* =
nullptr>
44inline auto pow(
const std::complex<T1>& a,
const std::complex<T2>& b) {
45 return std::pow(a, b);
59template <
typename T1,
typename T2, require_all_arithmetic_t<T1, T2>* =
nullptr>
60inline auto pow(
const T1& a,
const std::complex<T2>& b) {
61 return std::pow(a, b);
75template <
typename T1,
typename T2, require_all_arithmetic_t<T1, T2>* =
nullptr>
76inline auto pow(
const std::complex<T1>& a,
const T2& b) {
77 return std::pow(a, b);
91template <
typename T1,
typename T2, require_all_arithmetic_t<T1, T2>* =
nullptr>
92inline auto pow(
const T1& a,
const T2& b) {
93 return std::pow(a, b);
108template <
typename T1,
typename T2, require_any_container_t<T1, T2>* =
nullptr,
109 require_all_not_matrix_st<is_var, T1, T2>* =
nullptr,
110 require_all_arithmetic_t<base_type_t<T1>, base_type_t<T2>>* =
nullptr>
111inline auto pow(
const T1& a,
const T2& b) {
114 a, b, [](
const auto& c,
const auto& d) {
return stan::math::pow(c, d); });
std::complex< real_return_t< Ts... > > complex_return_t
Convenience type to calculate the complex return type, which wraps std::complex around the return typ...
complex_return_t< U, V > complex_pow(const U &x, const V &y)
Return the first argument raised to the power of the second argument.
auto pow(const T1 &x1, const T2 &x2)
fvar< T > log(const fvar< T > &x)
auto apply_scalar_binary(const T1 &x, const T2 &y, const F &f)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
fvar< T > exp(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...