Automatic Differentiation
 
Loading...
Searching...
No Matches
exp.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_EXP_HPP
2#define STAN_MATH_FWD_FUN_EXP_HPP
3
7#include <cmath>
8#include <complex>
9
10namespace stan {
11namespace math {
12template <typename T>
13inline fvar<T> exp(const fvar<T>& x) {
14 using std::exp;
15 return fvar<T>(exp(x.val_), x.d_ * exp(x.val_));
16}
17
25template <typename T>
26inline std::complex<fvar<T>> exp(const std::complex<fvar<T>>& z) {
27 return internal::complex_exp(z);
28}
29
30} // namespace math
31} // namespace stan
32#endif
std::complex< V > complex_exp(const std::complex< V > &z)
Return the natural (base e) complex exponentiation of the specified complex argument.
Definition exp.hpp:78
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:13
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Scalar val_
The value of this variable.
Definition fvar.hpp:49
Scalar d_
The tangent (derivative) of this variable.
Definition fvar.hpp:61
This template class represents scalars used in forward-mode automatic differentiation,...
Definition fvar.hpp:40