Automatic Differentiation
 
Loading...
Searching...
No Matches
exp.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_EXP_HPP
2#define STAN_MATH_FWD_FUN_EXP_HPP
3
9#include <cmath>
10#include <complex>
11
12namespace stan {
13namespace math {
14template <typename T>
15inline fvar<T> exp(const fvar<T>& x) {
16 return fvar<T>(exp(x.val_), x.d_ * exp(x.val_));
17}
18
26template <typename T>
27inline std::complex<fvar<T>> exp(const std::complex<fvar<T>>& z) {
28 return internal::complex_exp(z);
29}
30
31} // namespace math
32} // namespace stan
33#endif
std::complex< V > complex_exp(const std::complex< V > &z)
Return the natural (base e) complex exponentiation of the specified complex argument.
Definition exp.hpp:102
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Scalar val_
The value of this variable.
Definition fvar.hpp:49
Scalar d_
The tangent (derivative) of this variable.
Definition fvar.hpp:61
This template class represents scalars used in forward-mode automatic differentiation,...
Definition fvar.hpp:40