Automatic Differentiation
 
Loading...
Searching...
No Matches
apply_scalar_binary.hpp File Reference

Go to the source code of this file.

Namespaces

namespace  stan
 The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation.
 
namespace  stan::math
 Matrices and templated mathematical functions.
 

Functions

template<typename T1 , typename T2 , typename F , require_all_stan_scalar_t< T1, T2 > * = nullptr>
auto stan::math::apply_scalar_binary (const T1 &x, const T2 &y, const F &f)
 Base template function for vectorization of binary scalar functions defined by applying a functor to a combination of scalars, containers of matching sizes, or a combination of a scalar and a container.
 
template<typename T1 , typename T2 , typename F , require_all_eigen_t< T1, T2 > * = nullptr>
auto stan::math::apply_scalar_binary (T1 &&x, T2 &&y, F &&f)
 Specialization for use with two Eigen inputs.
 
template<typename T1 , typename T2 , typename F , require_eigen_vector_vt< is_stan_scalar, T1 > * = nullptr, require_std_vector_vt< std::is_integral, T2 > * = nullptr>
auto stan::math::apply_scalar_binary (T1 &&x, T2 &&y, F &&f)
 Specialization for use with one Eigen vector (row or column) and a one-dimensional std::vector of integer types.
 
template<typename T1 , typename T2 , typename F , require_eigen_matrix_dynamic_vt< is_stan_scalar, T1 > * = nullptr, require_std_vector_vt< is_std_vector, T2 > * = nullptr, require_std_vector_st< std::is_integral, T2 > * = nullptr>
auto stan::math::apply_scalar_binary (const T1 &x, const T2 &y, const F &f)
 Specialization for use with one Eigen matrix and a two-dimensional std::vector of integer types.
 
template<typename T1 , typename T2 , typename F , require_std_vector_vt< is_stan_scalar, T1 > * = nullptr, require_stan_scalar_t< T2 > * = nullptr>
auto stan::math::apply_scalar_binary (const T1 &x, const T2 &y, const F &f)
 Specialization for use when the first input is a (non-nested) std::vector and the second is a scalar.