1#ifndef STAN_MATH_REV_CORE_ZERO_ADJOINTS_HPP
2#define STAN_MATH_REV_CORE_ZERO_ADJOINTS_HPP
26template <
typename T, require_st_arithmetic<T>* =
nullptr>
51template <
typename EigMat, require_eigen_vt<is_autodiff, EigMat>* =
nullptr>
53 for (
size_t i = 0; i < x.size(); ++i)
54 x.coeffRef(i).adj() = 0;
67template <
typename StdVec,
70 for (
size_t i = 0; i < x.size(); ++i) {
require_t< container_type_check_base< is_std_vector, scalar_type_t, TypeCheck, Check... > > require_std_vector_st
Require type satisfies is_std_vector.
void zero_adjoints() noexcept
End of recursion for set_zero_adjoints.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...