Automatic Differentiation
 
Loading...
Searching...
No Matches
skew_double_exponential_ccdf_log.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_SKEW_DOUBLE_EXPONENTIAL_CCDF_LOG_HPP
2#define STAN_MATH_PRIM_PROB_SKEW_DOUBLE_EXPONENTIAL_CCDF_LOG_HPP
3
6
7namespace stan {
8namespace math {
9
13template <typename T_y, typename T_loc, typename T_scale, typename T_skewness>
14inline return_type_t<T_y, T_loc, T_scale, T_skewness>
15skew_double_exponential_ccdf_log(const T_y& y, const T_loc& mu,
16 const T_scale& sigma, const T_skewness& tau) {
17 return skew_double_exponential_lccdf<T_y, T_loc, T_scale, T_skewness>(
18 y, mu, sigma, tau);
19}
20
21} // namespace math
22} // namespace stan
23#endif
return_type_t< T_y, T_loc, T_scale, T_skewness > skew_double_exponential_ccdf_log(const T_y &y, const T_loc &mu, const T_scale &sigma, const T_skewness &tau)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...