1#ifndef STAN_MATH_REV_FUN_SINGULAR_VALUES_HPP
2#define STAN_MATH_REV_FUN_SINGULAR_VALUES_HPP
22template <
typename EigMat, require_rev_matrix_t<EigMat>* =
nullptr>
26 return ret_type(Eigen::VectorXd(0));
31 Eigen::JacobiSVD<Eigen::MatrixXd>
svd(
32 arena_m.val(), Eigen::ComputeThinU | Eigen::ComputeThinV);
void reverse_pass_callback(F &&functor)
Puts a callback on the autodiff stack to be called in reverse pass.
arena_t< T > to_arena(const T &a)
Converts given argument into a type that either has any dynamic allocation on AD stack or schedules i...
auto singular_values(const EigMat &m)
Return the vector of the singular values of the specified matrix in decreasing order of magnitude.
std::tuple< Eigen::Matrix< value_type_t< EigMat >, -1, -1 >, Eigen::Matrix< base_type_t< EigMat >, -1, 1 >, Eigen::Matrix< value_type_t< EigMat >, -1, -1 > > svd(const EigMat &m)
Given input matrix m, return the singular value decomposition (U,D,V) such that m = U*diag(D)*V^{T}
typename internal::arena_type_impl< std::decay_t< T > >::type arena_t
Determines a type that can be used in place of T that does any dynamic allocations on the AD stack.
std::conditional_t< is_any_var_matrix< ReturnType, Types... >::value, stan::math::var_value< stan::math::promote_scalar_t< double, plain_type_t< ReturnType > > >, stan::math::promote_scalar_t< stan::math::var_value< double >, plain_type_t< ReturnType > > > return_var_matrix_t
Given an Eigen type and several inputs, determine if a matrix should be var<Matrix> or Matrix<var>.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...