Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ svd() [1/2]

template<typename EigMat , require_eigen_matrix_dynamic_t< EigMat > * = nullptr, require_not_st_var< EigMat > * = nullptr>
std::tuple< Eigen::Matrix< value_type_t< EigMat >, -1, -1 >, Eigen::Matrix< base_type_t< EigMat >, -1, 1 >, Eigen::Matrix< value_type_t< EigMat >, -1, -1 > > stan::math::svd ( const EigMat &  m)

Given input matrix m, return the singular value decomposition (U,D,V) such that m = U*diag(D)*V^{T}

Template Parameters
EigMattype of the matrix
Parameters
mMxN input matrix
Returns
a tuple (U,D,V) where U is an orthogonal matrix, D a vector of singular values (in decreasing order), and V an orthogonal matrix

Definition at line 24 of file svd.hpp.