1#ifndef STAN_MATH_REV_FUN_POW_HPP
2#define STAN_MATH_REV_FUN_POW_HPP
74template <
typename Scal1,
typename Scal2,
75 require_any_var_t<base_type_t<Scal1>, base_type_t<Scal2>>* =
nullptr,
76 require_all_stan_scalar_t<Scal1, Scal2>* =
nullptr>
77inline auto pow(
const Scal1& base,
const Scal2& exponent) {
81 if constexpr (is_constant_v<Scal2>) {
82 if (exponent == 0.5) {
84 }
else if (exponent == 1.0) {
86 }
else if (exponent == 2.0) {
88 }
else if (exponent == -2.0) {
90 }
else if (exponent == -1.0) {
92 }
else if (exponent == -0.5) {
98 [base, exponent](
auto&& vi)
mutable {
102 const double vi_mul = vi.adj() * vi.val();
104 if constexpr (is_autodiff_v<Scal1>) {
107 if constexpr (is_autodiff_v<Scal2>) {
108 exponent.adj() += vi_mul * std::log(
value_of(base));
127template <
typename Mat1,
typename Mat2,
131inline auto pow(
const Mat1& base,
const Mat2& exponent) {
135 using val_type = std::conditional_t<
137 decltype(std::declval<expr_type>().eval()),
138 decltype(std::declval<expr_type>().matrix().eval())>;
152 const auto& ret_mul =
to_ref(ret.adj().array() * ret.val().array());
153 if constexpr (is_autodiff_v<Mat1>) {
154 arena_base.adj() += (are_vals_zero)
159 if constexpr (is_autodiff_v<Mat2>) {
161 += (are_vals_zero).
select(ret_mul *
value_of(arena_base).log(), 0);
164 return ret_type(ret);
178template <
typename Mat1,
typename Scal1,
182inline auto pow(
const Mat1& base,
const Scal1& exponent) {
185 if constexpr (is_constant_v<Scal1>) {
186 if (exponent == 0.5) {
187 return ret_type(
sqrt(base));
188 }
else if (exponent == 1.0) {
189 return ret_type(base);
190 }
else if (exponent == 2.0) {
191 return ret_type(
square(base));
192 }
else if (exponent == -2.0) {
194 }
else if (exponent == -1.0) {
195 return ret_type(
inv(base));
196 }
else if (exponent == -0.5) {
206 const auto& are_vals_zero =
to_ref(
value_of(arena_base).array() != 0.0);
207 const auto& ret_mul =
to_ref(ret.adj().array() * ret.val().array());
208 if constexpr (is_autodiff_v<Mat1>) {
209 arena_base.adj().array()
215 if constexpr (is_autodiff_v<Scal1>) {
223 return ret_type(ret);
243template <
typename Scal1,
typename Mat1,
247inline auto pow(Scal1 base,
const Mat1& exponent) {
257 const auto& ret_mul =
to_ref(ret.adj().array() * ret.val().array());
258 if constexpr (is_autodiff_v<Scal1>) {
263 if constexpr (is_autodiff_v<Mat1>) {
264 arena_exponent.adj().array() += ret_mul * std::log(
value_of(base));
267 return ret_type(ret);
281template <
typename T1,
typename T2, require_any_container_t<T1, T2>* =
nullptr,
282 require_all_not_matrix_st<is_var, T1, T2>* =
nullptr,
283 require_any_var_t<base_type_t<T1>, base_type_t<T2>>* =
nullptr>
284inline auto pow(T1&& a, T2&& b) {
286 [](
auto&& c,
auto&& d) {
288 std::forward<
decltype(d)>(d));
290 std::forward<T1>(a), std::forward<T2>(b));
require_any_t< container_type_check_base< is_matrix, scalar_type_t, TypeCheck, Check >... > require_any_matrix_st
Require any of the types satisfy is_matrix.
require_all_t< container_type_check_base< is_matrix, scalar_type_t, TypeCheck, Check >... > require_all_matrix_st
Require all of the types does not satisfy is_matrix.
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
require_t< is_stan_scalar< std::decay_t< T > > > require_stan_scalar_t
Require type satisfies is_stan_scalar.
require_all_not_t< is_stan_scalar< std::decay_t< Types > >... > require_all_not_stan_scalar_t
Require none of the types satisfy is_stan_scalar.
require_all_t< is_var_or_arithmetic< scalar_type_t< std::decay_t< Types > > >... > require_all_st_var_or_arithmetic
Require all of the scalar types satisfy is_var_or_arithmetic.
complex_return_t< U, V > complex_pow(const U &x, const V &y)
Return the first argument raised to the power of the second argument.
T as_array_or_scalar(T &&v)
Returns specified input value.
fvar< T > inv_square(const fvar< T > &x)
typename promote_scalar_type< std::decay_t< T >, std::decay_t< S > >::type promote_scalar_t
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
void reverse_pass_callback(F &&functor)
Puts a callback on the autodiff stack to be called in reverse pass.
auto pow(const T1 &x1, const T2 &x2)
auto apply_scalar_binary(F &&f, T1 &&x, T2 &&y)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
T value_of(const fvar< T > &v)
Return the value of the specified variable.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > sqrt(const fvar< T > &x)
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
fvar< T > inv_sqrt(const fvar< T > &x)
fvar< T > inv(const fvar< T > &x)
fvar< T > square(const fvar< T > &x)
typename internal::arena_type_impl< std::decay_t< T > >::type arena_t
Determines a type that can be used in place of T that does any dynamic allocations on the AD stack.
std::conditional_t< is_any_var_matrix< ReturnType, Types... >::value, stan::math::var_value< stan::math::promote_scalar_t< double, plain_type_t< ReturnType > > >, stan::math::promote_scalar_t< stan::math::var_value< double >, plain_type_t< ReturnType > > > return_var_matrix_t
Given an Eigen type and several inputs, determine if a matrix should be var<Matrix> or Matrix<var>.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If T is a complex type (that is, an instance of std::complex) or a cv-qualified version thereof,...
Check if a type is derived from Eigen::ArrayBase
Extends std::false_type when instantiated with zero or more template parameters, all of which extend ...