1#ifndef STAN_MATH_PRIM_PROB_PARETO_TYPE_2_LCCDF_HPP
2#define STAN_MATH_PRIM_PROB_PARETO_TYPE_2_LCCDF_HPP
21template <
typename T_y,
typename T_loc,
typename T_scale,
typename T_shape,
23 T_y, T_loc, T_scale, T_shape>* =
nullptr>
25 const T_y& y,
const T_loc& mu,
const T_scale& lambda,
26 const T_shape& alpha) {
32 static constexpr const char* function =
"pareto_type_2_lccdf";
34 mu,
"Scale parameter", lambda,
"Shape parameter",
43 T_lambda_ref lambda_ref = lambda;
44 T_alpha_ref alpha_ref = alpha;
48 decltype(
auto) lambda_val
61 = to_ref_if<is_autodiff_v<T_shape>>(
log1p((y_val - mu_val) / lambda_val));
62 T_partials_return P = -
sum(alpha_val * log_temp);
64 if constexpr (is_any_autodiff_v<T_y, T_loc, T_scale>) {
66 (is_autodiff_v<T_y> + is_autodiff_v<T_scale> + is_autodiff_v<T_loc>)
67 >= 2>(alpha_val / (y_val - mu_val + lambda_val));
68 if constexpr (is_autodiff_v<T_y>) {
69 partials<0>(ops_partials) = -rep_deriv;
71 if constexpr (is_autodiff_v<T_scale>) {
72 edge<2>(ops_partials).partials_
73 = rep_deriv * (y_val - mu_val) / lambda_val;
75 if constexpr (is_autodiff_v<T_loc>) {
76 partials<1>(ops_partials) = std::move(rep_deriv);
79 size_t N =
max_size(y, mu, lambda, alpha);
80 if constexpr (is_autodiff_v<T_shape>) {
83 using Log_temp_array = Eigen::Array<Log_temp_scalar, Eigen::Dynamic, 1>;
86 partials<3>(ops_partials) = -log_temp;
88 partials<3>(ops_partials) = Log_temp_array::Constant(N, 1, -log_temp);
91 partials<3>(ops_partials) = -log_temp * N /
max_size(y, mu, lambda);
95 return ops_partials.build(P);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl, T_shape_cl > pareto_type_2_lccdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &lambda, const T_shape_cl &alpha)
Returns the pareto type 2 log complementaty cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
T to_ref_if(T &&a)
No-op that should be optimized away.
void check_greater_or_equal(const char *function, const char *name, const T_y &y, const T_low &low, Idxs... idxs)
Throw an exception if y is not greater or equal than low.
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > log1p(const fvar< T > &x)
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...