![]() |
Stan Math Library
5.1.0
Automatic Differentiation
|
#include <stan/math/prim/meta.hpp>#include <stan/math/prim/err.hpp>#include <stan/math/prim/fun/binomial_coefficient_log.hpp>#include <stan/math/prim/fun/digamma.hpp>#include <stan/math/prim/fun/log.hpp>#include <stan/math/prim/fun/max_size.hpp>#include <stan/math/prim/fun/multiply_log.hpp>#include <stan/math/prim/fun/scalar_seq_view.hpp>#include <stan/math/prim/fun/size.hpp>#include <stan/math/prim/fun/size_zero.hpp>#include <stan/math/prim/fun/value_of.hpp>#include <stan/math/prim/functor/partials_propagator.hpp>#include <cmath>Go to the source code of this file.
Namespaces | |
| namespace | stan |
| The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation. | |
| namespace | stan::math |
| Matrices and templated mathematical functions. | |
Functions | |
| template<bool propto, typename T_n , typename T_location , typename T_precision , require_all_not_nonscalar_prim_or_rev_kernel_expression_t< T_n, T_location, T_precision > * = nullptr> | |
| return_type_t< T_location, T_precision > | stan::math::neg_binomial_2_lpmf (const T_n &n, const T_location &mu, const T_precision &phi) |
| template<typename T_n , typename T_location , typename T_precision > | |
| return_type_t< T_location, T_precision > | stan::math::neg_binomial_2_lpmf (const T_n &n, const T_location &mu, const T_precision &phi) |