1#ifndef STAN_MATH_PRIM_PROB_NEG_BINOMIAL_2_LOG_GLM_LPMF_HPP
2#define STAN_MATH_PRIM_PROB_NEG_BINOMIAL_2_LOG_GLM_LPMF_HPP
64template <
bool propto,
typename T_y,
typename T_x,
typename T_alpha,
65 typename T_beta,
typename T_precision,
66 require_matrix_t<T_x>* =
nullptr>
68 const T_y& y,
const T_x& x,
const T_alpha& alpha,
const T_beta&
beta,
69 const T_precision& phi) {
75 constexpr int T_x_rows = T_x::RowsAtCompileTime;
77 using T_partials_return
79 using T_precision_val =
typename std::conditional_t<
81 Eigen::Array<partials_return_t<T_precision>, -1, 1>,
83 using T_sum_val =
typename std::conditional_t<
85 Eigen::Array<partials_return_t<T_y, T_precision>, -1, 1>,
88 typename std::conditional_t<T_x_rows == 1, T_partials_return,
89 Array<T_partials_return, Dynamic, 1>>;
91 typename std::conditional_t<T_x_rows == 1, T_xbeta_partials,
92 Array<T_xbeta_partials, Dynamic, 1>>;
99 const size_t N_attributes = x.cols();
101 static constexpr const char* function =
"neg_binomial_2_log_glm_lpmf";
108 T_alpha_ref alpha_ref = alpha;
109 T_beta_ref beta_ref =
beta;
110 const auto& beta_val =
value_of(beta_ref);
111 const auto& alpha_val =
value_of(alpha_ref);
121 const auto& y_ref =
to_ref(y);
122 T_phi_ref phi_ref = phi;
124 const auto& y_val =
value_of(y_ref);
125 const auto& phi_val =
value_of(phi_ref);
138 const auto& x_val = to_ref_if<!is_constant<T_beta>::value>(
value_of(x_ref));
143 Array<T_partials_return, Dynamic, 1> theta(N_instances);
145 T_theta_tmp theta_tmp
146 = forward_as<T_xbeta_tmp>((x_val * beta_val_vec)(0, 0));
149 theta = (x_val * beta_val_vec).array();
152 check_finite(function,
"Matrix of independent variables", theta);
153 T_precision_val log_phi =
log(phi_arr);
154 Array<T_partials_return, Dynamic, 1> logsumexp_theta_logphi
159 T_sum_val y_plus_phi = y_arr + phi_arr;
162 T_partials_return logp(0);
167 logp -=
sum(
lgamma(y_arr + 1.0)) * N_instances;
173 for (
size_t n = 0; n < N_instances; ++n) {
180 forward_as<T_phi_scalar>(phi_val))
181 -
lgamma(forward_as<T_phi_scalar>(phi_val)));
184 logp -=
sum(y_plus_phi * logsumexp_theta_logphi);
187 logp +=
sum(y_arr * theta);
193 logp +=
sum(
lgamma(y_plus_phi)) * N_instances;
201 Array<T_partials_return, Dynamic, 1> theta_exp = theta.exp();
203 Matrix<T_partials_return, Dynamic, 1> theta_derivative
204 = y_arr - theta_exp * y_plus_phi / (theta_exp + phi_arr);
207 edge<2>(ops_partials).partials_
208 = forward_as<Matrix<T_partials_return, 1, Dynamic>>(
209 theta_derivative.sum() * x_val);
211 edge<2>(ops_partials).partials_
212 = x_val.transpose() * theta_derivative;
217 edge<0>(ops_partials).partials_
218 = forward_as<Array<T_partials_return, Dynamic, T_x_rows>>(
219 beta_val_vec * theta_derivative.sum());
221 edge<0>(ops_partials).partials_
222 = (beta_val_vec * theta_derivative.transpose()).
transpose();
227 partials<1>(ops_partials) = std::move(theta_derivative);
229 partials<1>(ops_partials)[0] =
sum(theta_derivative);
235 edge<3>(ops_partials).partials_
236 = 1 - y_plus_phi / (theta_exp + phi_arr) + log_phi
237 - logsumexp_theta_logphi +
digamma(y_plus_phi) -
digamma(phi_arr);
239 partials<3>(ops_partials)[0]
241 +
sum(-y_plus_phi / (theta_exp + phi_arr) + log_phi
242 - logsumexp_theta_logphi +
digamma(y_plus_phi)
247 return ops_partials.build(logp);
250template <
typename T_y,
typename T_x,
typename T_alpha,
typename T_beta,
251 typename T_precision>
254 const T_beta&
beta,
const T_precision& phi) {
255 return neg_binomial_2_log_glm_lpmf<false>(y, x, alpha,
beta, phi);
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
auto transpose(Arg &&a)
Transposes a kernel generator expression.
return_type_t< T_x_cl, T_alpha_cl, T_beta_cl, T_phi_cl > neg_binomial_2_log_glm_lpmf(const T_y_cl &y, const T_x_cl &x, const T_alpha_cl &alpha, const T_beta_cl &beta, const T_phi_cl &phi)
Returns the log PMF of the Generalized Linear Model (GLM) with Negative-Binomial-2 distribution and l...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
fvar< T > multiply_log(const fvar< T > &x1, const fvar< T > &x2)
T as_array_or_scalar(T &&v)
Returns specified input value.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
void check_consistent_size(const char *function, const char *name, const T &x, size_t expected_size)
Check if x is consistent with size expected_size.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
fvar< T > log1p_exp(const fvar< T > &x)
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
typename ref_type_if<!is_constant< T >::value, T >::type ref_type_if_not_constant_t
typename scalar_type< T >::type scalar_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...