1#ifndef STAN_MATH_PRIM_PROB_EXPONENTIAL_LPDF_HPP
2#define STAN_MATH_PRIM_PROB_EXPONENTIAL_LPDF_HPP
49template <
bool propto,
typename T_y,
typename T_inv_scale,
51 T_y, T_inv_scale>* =
nullptr>
53 const T_inv_scale&
beta) {
55 using T_partials_array = Eigen::Array<T_partials_return, Eigen::Dynamic, 1>;
58 static constexpr const char* function =
"exponential_lpdf";
60 "Inverse scale parameter",
beta);
62 T_beta_ref beta_ref =
beta;
76 T_partials_return logp(0.0);
81 logp -=
sum(beta_val * y_val);
86 using beta_val_array = Eigen::Array<beta_val_scalar, Eigen::Dynamic, 1>;
88 partials<0>(ops_partials) = T_partials_array::Constant(
89 math::size(y), -forward_as<beta_val_scalar>(beta_val));
91 partials<0>(ops_partials) = -forward_as<beta_val_array>(beta_val);
93 forward_as<internal::broadcast_array<T_partials_return>>(
94 partials<0>(ops_partials))
95 = -forward_as<beta_val_scalar>(beta_val);
99 partials<1>(ops_partials) =
inv(beta_val) - y_val;
101 return ops_partials.build(logp);
104template <
typename T_y,
typename T_inv_scale>
106 const T_y& y,
const T_inv_scale&
beta) {
107 return exponential_lpdf<false>(y,
beta);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_inv_scale_cl > exponential_lpdf(const T_y_cl &y, const T_inv_scale_cl &beta)
The log of an exponential density for y with the specified inverse scale parameter.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
fvar< T > log(const fvar< T > &x)
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
fvar< T > inv(const fvar< T > &x)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
typename ref_type_if<!is_constant< T >::value, T >::type ref_type_if_not_constant_t
typename scalar_type< T >::type scalar_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...