Automatic Differentiation
 
Loading...
Searching...
No Matches
exp_mod_normal_lccdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_EXP_MOD_NORMAL_LCCDF_HPP
2#define STAN_MATH_PRIM_PROB_EXP_MOD_NORMAL_LCCDF_HPP
3
23#include <cmath>
24
25namespace stan {
26namespace math {
27
28template <typename T_y, typename T_loc, typename T_scale, typename T_inv_scale,
30 T_y, T_loc, T_scale, T_inv_scale>* = nullptr>
32 const T_y& y, const T_loc& mu, const T_scale& sigma,
33 const T_inv_scale& lambda) {
35 using T_y_ref = ref_type_if_not_constant_t<T_y>;
36 using T_mu_ref = ref_type_if_not_constant_t<T_loc>;
37 using T_sigma_ref = ref_type_if_not_constant_t<T_scale>;
38 using T_lambda_ref = ref_type_if_not_constant_t<T_inv_scale>;
39 static constexpr const char* function = "exp_mod_normal_lccdf";
40 check_consistent_sizes(function, "Random variable", y, "Location parameter",
41 mu, "Scale parameter", sigma, "Inv_scale paramter",
42 lambda);
43 T_y_ref y_ref = y;
44 T_mu_ref mu_ref = mu;
45 T_sigma_ref sigma_ref = sigma;
46 T_lambda_ref lambda_ref = lambda;
47
48 decltype(auto) y_val = to_ref(as_value_column_array_or_scalar(y_ref));
49 decltype(auto) mu_val = to_ref(as_value_column_array_or_scalar(mu_ref));
50 decltype(auto) sigma_val = to_ref(as_value_column_array_or_scalar(sigma_ref));
51 decltype(auto) lambda_val
53
54 check_not_nan(function, "Random variable", y_val);
55 check_finite(function, "Location parameter", mu_val);
56 check_positive_finite(function, "Scale parameter", sigma_val);
57 check_positive_finite(function, "Inv_scale parameter", lambda_val);
58
59 if (size_zero(y, mu, sigma, lambda)) {
60 return 0;
61 }
62
63 auto ops_partials
64 = make_partials_propagator(y_ref, mu_ref, sigma_ref, lambda_ref);
65
66 scalar_seq_view<decltype(y_val)> y_vec(y_val);
67 for (size_t n = 0, size_y = stan::math::size(y); n < size_y; n++) {
68 if (is_inf(y_vec[n])) {
69 return ops_partials.build(y_vec[n] > 0 ? negative_infinity() : 0);
70 }
71 }
72
73 const auto& inv_sigma
74 = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale>>(inv(sigma_val));
75 const auto& diff = to_ref(y_val - mu_val);
76 const auto& v = to_ref(lambda_val * sigma_val);
77 const auto& scaled_diff = to_ref(diff * INV_SQRT_TWO * inv_sigma);
78 const auto& scaled_diff_diff
79 = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale, T_inv_scale>>(
80 scaled_diff - v * INV_SQRT_TWO);
81 const auto& erf_calc = to_ref(0.5 * (1 + erf(scaled_diff_diff)));
82
83 const auto& exp_term
84 = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale, T_inv_scale>>(
85 exp(0.5 * square(v) - lambda_val * diff));
86 const auto& ccdf_n
87 = to_ref(0.5 - 0.5 * erf(scaled_diff) + exp_term * erf_calc);
88
89 T_partials_return ccdf_log = sum(log(ccdf_n));
90
91 if constexpr (is_any_autodiff_v<T_y, T_loc, T_scale, T_inv_scale>) {
92 const auto& exp_term_2 = to_ref_if<(
93 is_any_autodiff_v<T_y, T_loc, T_scale> && is_autodiff_v<T_inv_scale>)>(
94 exp(-square(scaled_diff_diff)));
95 if constexpr (is_any_autodiff_v<T_y, T_loc, T_scale>) {
96 constexpr bool need_deriv_refs
97 = is_any_autodiff_v<T_y, T_loc> && is_autodiff_v<T_scale>;
98 const auto& deriv_1
99 = to_ref_if<need_deriv_refs>(lambda_val * exp_term * erf_calc);
100 const auto& deriv_2 = to_ref_if<need_deriv_refs>(
101 INV_SQRT_TWO_PI * exp_term * exp_term_2 * inv_sigma);
102 const auto& sq_scaled_diff = square(scaled_diff);
103 const auto& exp_m_sq_scaled_diff = exp(-sq_scaled_diff);
104 const auto& deriv_3 = to_ref_if<need_deriv_refs>(
105 INV_SQRT_TWO_PI * exp_m_sq_scaled_diff * inv_sigma);
106 if constexpr (is_any_autodiff_v<T_y, T_loc>) {
107 const auto& deriv
108 = to_ref_if<(is_autodiff_v<T_loc> && is_autodiff_v<T_y>)>(
109 (deriv_1 - deriv_2 + deriv_3) / ccdf_n);
110 if constexpr (is_autodiff_v<T_y>) {
111 partials<0>(ops_partials) = -deriv;
112 }
113 if constexpr (is_autodiff_v<T_loc>) {
114 partials<1>(ops_partials) = deriv;
115 }
116 }
117 if constexpr (is_autodiff_v<T_scale>) {
118 edge<2>(ops_partials).partials_
119 = ((deriv_1 - deriv_2) * v
120 + (deriv_3 - deriv_2) * scaled_diff * SQRT_TWO)
121 / ccdf_n;
122 }
123 }
124 if constexpr (is_autodiff_v<T_inv_scale>) {
125 edge<3>(ops_partials).partials_
126 = exp_term
127 * ((v * sigma_val - diff) * erf_calc
128 - INV_SQRT_TWO_PI * sigma_val * exp_term_2)
129 / ccdf_n;
130 }
131 }
132
133 return ops_partials.build(ccdf_log);
134}
135
136} // namespace math
137} // namespace stan
138#endif
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl, T_inv_scale_cl > exp_mod_normal_lccdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma, const T_inv_scale_cl &lambda)
Returns the exp mod normal log complementary cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
Definition size.hpp:19
static constexpr double negative_infinity()
Return negative infinity.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
T to_ref_if(T &&a)
No-op that should be optimized away.
Definition to_ref.hpp:45
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
fvar< T > erf(const fvar< T > &x)
Definition erf.hpp:16
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
static constexpr double INV_SQRT_TWO_PI
The value of 1 over the square root of , .
static constexpr double SQRT_TWO
The value of the square root of 2, .
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int is_inf(const fvar< T > &x)
Returns 1 if the input's value is infinite and 0 otherwise.
Definition is_inf.hpp:21
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
Definition to_ref.hpp:18
fvar< T > inv(const fvar< T > &x)
Definition inv.hpp:13
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > square(const fvar< T > &x)
Definition square.hpp:12
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
Definition ref_type.hpp:63
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...