1#ifndef STAN_MATH_PRIM_PROB_DOUBLE_EXPONENTIAL_CDF_HPP
2#define STAN_MATH_PRIM_PROB_DOUBLE_EXPONENTIAL_CDF_HPP
36template <
typename T_y,
typename T_loc,
typename T_scale,
38 T_y, T_loc, T_scale>* =
nullptr>
40 const T_y& y,
const T_loc& mu,
const T_scale& sigma) {
42 using T_partials_array = Eigen::Array<T_partials_return, Eigen::Dynamic, 1>;
46 T_partials_array, T_partials_return>;
51 static constexpr const char* function =
"double_exponential_cdf";
54 T_sigma_ref sigma_ref = sigma;
56 T_partials_return cdf(1.0);
71 const auto& inv_sigma =
to_ref(
inv(sigma_val));
72 const auto& scaled_diff
73 = to_ref_if<is_autodiff_v<T_scale>>((y_val - mu_val) * inv_sigma);
74 const auto& exp_scaled_diff =
to_ref(
exp(scaled_diff));
76 T_rep_deriv rep_deriv;
78 cdf = (y_val < mu_val)
79 .
select(exp_scaled_diff * 0.5, 1.0 - 0.5 / exp_scaled_diff)
81 rep_deriv = (y_val < mu_val)
83 cdf * inv_sigma / (2 * exp_scaled_diff - 1));
86 cdf = (y_val < mu_val) ? (exp_scaled_diff * 0.5).prod()
87 : (1.0 - 0.5 / exp_scaled_diff).
prod();
89 cdf = (y_val < mu_val) ? exp_scaled_diff * 0.5
90 : 1.0 - 0.5 / exp_scaled_diff;
93 rep_deriv = cdf * inv_sigma;
95 rep_deriv = cdf * inv_sigma / (2 * exp_scaled_diff - 1);
99 if constexpr (is_autodiff_v<T_y>) {
100 partials<0>(ops_partials) = rep_deriv;
102 if constexpr (is_autodiff_v<T_loc>) {
103 partials<1>(ops_partials) = -rep_deriv;
105 if constexpr (is_autodiff_v<T_scale>) {
106 partials<2>(ops_partials) = -rep_deriv * scaled_diff;
108 return ops_partials.build(cdf);
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > double_exponential_cdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the double exponential cumulative density function.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
value_type_t< T > prod(const T &m)
Calculates product of given kernel generator expression elements.
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
fvar< T > inv(const fvar< T > &x)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
If the input type T is either an eigen matrix with 1 column or 1 row at compile time or a standard ve...