1#ifndef STAN_MATH_PRIM_FUN_TANH_HPP
2#define STAN_MATH_PRIM_FUN_TANH_HPP
23template <
typename T, require_arithmetic_t<T>* =
nullptr>
35template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
36inline auto tanh(T&& x) {
49 static inline auto fun(T&& x) {
50 return tanh(std::forward<T>(x));
61template <
typename Container, require_ad_container_t<Container>* =
nullptr>
62inline auto tanh(Container&& x) {
64 std::forward<Container>(x));
75template <
typename Container,
77inline auto tanh(Container&& x) {
78 return apply_vector_unary<Container>::apply(
79 std::forward<Container>(x), [](
auto&& v) {
return v.array().
tanh(); });
93 auto exp_neg_z =
exp(-z);
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
complex_return_t< U, V > complex_divide(const U &lhs, const V &rhs)
Return the quotient of the specified arguments.
std::complex< V > complex_tanh(const std::complex< V > &z)
Return the hyperbolic tangent of the complex argument.
fvar< T > tanh(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
Structure to wrap tanh() so that it can be vectorized.