Automatic Differentiation
 
Loading...
Searching...
No Matches
tanh.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_TANH_HPP
2#define STAN_MATH_FWD_FUN_TANH_HPP
3
8#include <cmath>
9#include <complex>
10
11namespace stan {
12namespace math {
13
14template <typename T>
15inline fvar<T> tanh(const fvar<T>& x) {
16 using std::tanh;
17 T u = tanh(x.val_);
18 return fvar<T>(u, x.d_ * (1 - u * u));
19}
20
28template <typename T>
29inline std::complex<fvar<T>> tanh(const std::complex<fvar<T>>& z) {
31}
32
33} // namespace math
34} // namespace stan
35#endif
std::complex< V > complex_tanh(const std::complex< V > &z)
Return the hyperbolic tangent of the complex argument.
Definition tanh.hpp:71
fvar< T > tanh(const fvar< T > &x)
Definition tanh.hpp:15
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Scalar val_
The value of this variable.
Definition fvar.hpp:49
Scalar d_
The tangent (derivative) of this variable.
Definition fvar.hpp:61
This template class represents scalars used in forward-mode automatic differentiation,...
Definition fvar.hpp:40