1#ifndef STAN_MATH_PRIM_FUN_ROUND_HPP
2#define STAN_MATH_PRIM_FUN_ROUND_HPP
13template <
typename T, require_arithmetic_t<T>* =
nullptr>
27 static inline auto fun(T&& x) {
28 return round(std::forward<T>(x));
39template <
typename Container,
42 Container>* =
nullptr,
44inline auto round(Container&& x) {
46 std::forward<Container>(x));
57template <
typename Container,
59inline auto round(Container&& x) {
61 std::forward<Container>(x), [](
auto&& v) {
return v.array().
round(); });
require_not_t< container_type_check_base< is_container, scalar_type_t, TypeCheck, Check... > > require_not_container_st
Require type does not satisfy is_container.
require_t< container_type_check_base< is_container, scalar_type_t, TypeCheck, Check... > > require_container_st
Require type satisfies is_container.
require_t< is_container< std::decay_t< T > > > require_container_t
Require type satisfies is_container.
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
fvar< T > round(const fvar< T > &x)
Return the closest integer to the specified argument, with halfway cases rounded away from zero.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
Structure to wrap round() so it can be vectorized.