Automatic Differentiation
 
Loading...
Searching...
No Matches
rising_factorial.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_RISING_FACTORIAL_HPP
2#define STAN_MATH_PRIM_FUN_RISING_FACTORIAL_HPP
3
8#include <boost/math/special_functions/factorials.hpp>
9
10namespace stan {
11namespace math {
12
62template <typename T, require_arithmetic_t<T>* = nullptr>
63inline return_type_t<T> rising_factorial(const T& x, int n) {
64 static constexpr const char* function = "rising_factorial";
65 check_not_nan(function, "first argument", x);
66 check_nonnegative(function, "second argument", n);
67 return boost::math::rising_factorial(x, n, boost_policy_t<>());
68}
69
80template <typename T1, typename T2, require_any_container_t<T1, T2>* = nullptr>
81inline auto rising_factorial(const T1& a, const T2& b) {
82 return apply_scalar_binary(a, b, [&](const auto& c, const auto& d) {
83 return rising_factorial(c, d);
84 });
85}
86
87} // namespace math
88} // namespace stan
89#endif
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
fvar< T > rising_factorial(const fvar< T > &x, int n)
Return autodiff variable with the gradient and result of the rising factorial function applied to the...
boost::math::policies::policy< boost::math::policies::overflow_error< boost::math::policies::errno_on_error >, boost::math::policies::pole_error< boost::math::policies::errno_on_error >, boost::math::policies::promote_double< false >, boost::math::policies::digits2< B > > boost_policy_t
Boost policy that overrides the defaults to match the built-in C++ standard library functions.
auto apply_scalar_binary(const T1 &x, const T2 &y, const F &f)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...