Automatic Differentiation
 
Loading...
Searching...
No Matches
fdim.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_FDIM_HPP
2#define STAN_MATH_PRIM_FUN_FDIM_HPP
3
6
7namespace stan {
8namespace math {
9
21template <typename T1, typename T2, require_all_arithmetic_t<T1, T2>* = nullptr>
22inline double fdim(T1 x, T2 y) {
23 using std::fdim;
24 return fdim(x, y);
25}
26
37template <typename T1, typename T2, require_any_container_t<T1, T2>* = nullptr>
38inline auto fdim(T1&& a, T2&& b) {
40 [](auto&& c, auto&& d) {
41 return fdim(std::forward<decltype(c)>(c), std::forward<decltype(d)>(d));
42 },
43 std::forward<T1>(a), std::forward<T2>(b));
44}
45
46} // namespace math
47} // namespace stan
48#endif
fvar< T > fdim(const fvar< T > &x, const fvar< T > &y)
Return the positive difference of the specified values (C++11).
Definition fdim.hpp:21
auto apply_scalar_binary(F &&f, T1 &&x, T2 &&y)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...