1#ifndef STAN_MATH_PRIM_FUN_COS_HPP
2#define STAN_MATH_PRIM_FUN_COS_HPP
23template <
typename T, require_arithmetic_t<T>* =
nullptr>
24inline auto cos(
const T x) {
35template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
36inline auto cos(
const T x) {
49 static inline auto fun(T&& x) {
50 return cos(std::forward<T>(x));
62template <
typename Container, require_ad_container_t<Container>* =
nullptr>
63inline auto cos(Container&& x) {
65 std::forward<Container>(x));
76template <
typename Container,
78inline auto cos(Container&& x) {
79 return apply_vector_unary<Container>::apply(
80 std::forward<Container>(x), [](
auto&& v) {
return v.array().
cos(); });
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< T > complex_cos(const std::complex< T > &z)
Return the cosine of the complex argument.
std::complex< T > i_times(const std::complex< T > &z)
Return the specified complex number multiplied by i.
fvar< T > cosh(const fvar< T > &x)
fvar< T > cos(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
Structure to wrap cos() so it can be vectorized.