1#ifndef STAN_MATH_PRIM_FUN_ASINH_HPP
2#define STAN_MATH_PRIM_FUN_ASINH_HPP
29template <
typename T, require_arithmetic_t<T>* =
nullptr>
41template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
42inline auto asinh(T&& x) {
55 static inline auto fun(T&& x) {
56 return asinh(std::forward<T>(x));
68template <
typename T, require_ad_container_t<T>* =
nullptr>
69inline auto asinh(T&& x) {
70 return apply_scalar_unary<asinh_fun, T>::apply(std::forward<T>(x));
81template <
typename Container,
82 require_container_bt<std::is_arithmetic, Container>* =
nullptr>
83inline auto asinh(Container&& x) {
85 std::forward<Container>(x));
99 auto y =
log(z +
sqrt(1 + z * z));
std::complex< V > complex_asinh(const std::complex< V > &z)
Return the hyperbolic arc sine of the complex argument.
double copysign(double a, double_d b)
double value_of_rec(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > asinh(const fvar< T > &x)
fvar< T > log(const fvar< T > &x)
fvar< T > sqrt(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
Structure to wrap asinh() so it can be vectorized.