Stan Math Library
4.9.0
Automatic Differentiation
Loading...
Searching...
No Matches
poisson_binomial_ccdf_log.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_PROB_POISSON_BINOMIAL_CCDF_LOG_HPP
2
#define STAN_MATH_PRIM_PROB_POISSON_BINOMIAL_CCDF_LOG_HPP
3
4
#include <
stan/math/prim/meta.hpp
>
5
#include <
stan/math/prim/prob/poisson_binomial_lccdf.hpp
>
6
7
namespace
stan
{
8
namespace
math {
9
13
template
<
typename
T_y,
typename
T_theta>
14
return_type_t<T_theta>
poisson_binomial_ccdf_log
(
const
T_y& y,
15
const
T_theta& theta) {
16
return
poisson_binomial_lccdf<T_y, T_theta>(y, theta);
17
}
18
19
}
// namespace math
20
}
// namespace stan
21
#endif
stan::math::poisson_binomial_ccdf_log
return_type_t< T_theta > poisson_binomial_ccdf_log(const T_y &y, const T_theta &theta)
Definition
poisson_binomial_ccdf_log.hpp:14
stan::return_type_t
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
Definition
return_type.hpp:218
stan
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Definition
unit_vector_constrain.hpp:15
poisson_binomial_lccdf.hpp
meta.hpp
stan
math
prim
prob
poisson_binomial_ccdf_log.hpp
[
Stan Home Page
]
© 2011–2019, Stan Development Team.