1#ifndef STAN_MATH_OPENCL_PRIM_STUDENT_T_LPDF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_STUDENT_T_LPDF_HPP 
   45template <
bool propto, 
typename T_y_cl, 
typename T_dof_cl, 
typename T_loc_cl,
 
   48              T_y_cl, T_dof_cl, T_loc_cl, T_scale_cl>* = 
nullptr,
 
   50                                        T_scale_cl>* = 
nullptr>
 
   52    const T_y_cl& y, 
const T_dof_cl& nu, 
const T_loc_cl& mu,
 
   53    const T_scale_cl& sigma) {
 
   54  static constexpr const char* function = 
"student_t_lpdf(OpenCL)";
 
   55  using T_partials_return
 
   61                         "Degrees of freedom parameter", nu,
 
   62                         "Location parameter", mu, 
"Scale parameter", sigma);
 
   63  const size_t N = 
max_size(y, mu, sigma);
 
   78  const auto& nu_val = 
value_of(nu_col);
 
   79  const auto& mu_val = 
value_of(mu_col);
 
   80  const auto& sigma_val = 
value_of(sigma_col);
 
   83      = 
check_cl(function, 
"Random variable", y_val, 
"not NaN");
 
   84  auto y_not_nan = !isnan(y_val);
 
   85  auto check_nu_positive_finite = 
check_cl(
 
   86      function, 
"Degrees of freedom parameter", nu_val, 
"positive finite");
 
   87  auto nu_positive_finite = 0 < nu_val && 
isfinite(nu_val);
 
   89      = 
check_cl(function, 
"Location parameter", mu_val, 
"finite");
 
   91  auto check_sigma_positive_finite
 
   92      = 
check_cl(function, 
"Scale parameter", sigma_val, 
"positive finite");
 
   93  auto sigma_positive_finite = 0 < sigma_val && 
isfinite(sigma_val);
 
   95  auto half_nu = 0.5 * nu_val;
 
   96  auto y_scaled = 
elt_divide(y_val - mu_val, sigma_val);
 
   98  auto square_y_scaled_over_nu = 
elt_divide(square_y_scaled, nu_val);
 
   99  auto log1p_val = 
log1p(square_y_scaled_over_nu);
 
  102  auto logp2 = static_select<include_summand<propto, T_dof_cl>::value>(
 
  107          logp2 - 
log(sigma_val), logp2));
 
  115                              1 + square_y_scaled_over_nu)
 
  120  auto sigma_deriv = 
elt_divide(rep_deriv, sigma_val);
 
  128  results(check_y_not_nan, check_nu_positive_finite, check_mu_finite,
 
  129          check_sigma_positive_finite, logp_cl, y_deriv_cl, nu_deriv_cl,
 
  130          mu_deriv_cl, sigma_deriv_cl)
 
  131      = 
expressions(y_not_nan, nu_positive_finite, mu_finite,
 
  132                    sigma_positive_finite, logp_expr,
 
  133                    calc_if<is_autodiff_v<T_y_cl>>(-deriv_y_mu),
 
  134                    calc_if<is_autodiff_v<T_dof_cl>>(nu_deriv),
 
  135                    calc_if<is_autodiff_v<T_loc_cl>>(deriv_y_mu),
 
  136                    calc_if<is_autodiff_v<T_scale_cl>>(sigma_deriv));
 
  147  if constexpr (is_autodiff_v<T_y_cl>) {
 
  148    partials<0>(ops_partials) = std::move(y_deriv_cl);
 
  150  if constexpr (is_autodiff_v<T_dof_cl>) {
 
  151    partials<1>(ops_partials) = std::move(nu_deriv_cl);
 
  153  if constexpr (is_autodiff_v<T_loc_cl>) {
 
  154    partials<2>(ops_partials) = std::move(mu_deriv_cl);
 
  156  if constexpr (is_autodiff_v<T_scale_cl>) {
 
  157    partials<3>(ops_partials) = std::move(sigma_deriv_cl);
 
  159  return ops_partials.build(logp);
 
Represents an arithmetic matrix on the OpenCL device.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_y_cl, T_dof_cl, T_loc_cl, T_scale_cl > student_t_lpdf(const T_y_cl &y, const T_dof_cl &nu, const T_loc_cl &mu, const T_scale_cl &sigma)
The log of the Student-t density for the given y, nu, mean, and scale parameter.
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log(const fvar< T > &x)
 
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
static constexpr double LOG_SQRT_PI
The natural logarithm of the square root of , .
 
fvar< T > log1p(const fvar< T > &x)
 
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
 
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...