1#ifndef STAN_MATH_OPENCL_PRIM_STUDENT_T_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_STUDENT_T_LPDF_HPP
45template <
bool propto,
typename T_y_cl,
typename T_dof_cl,
typename T_loc_cl,
48 T_y_cl, T_dof_cl, T_loc_cl, T_scale_cl>* =
nullptr,
50 T_scale_cl>* =
nullptr>
52 const T_y_cl& y,
const T_dof_cl& nu,
const T_loc_cl& mu,
53 const T_scale_cl& sigma) {
54 static constexpr const char* function =
"student_t_lpdf(OpenCL)";
55 using T_partials_return
61 "Degrees of freedom parameter", nu,
62 "Location parameter", mu,
"Scale parameter", sigma);
63 const size_t N =
max_size(y, mu, sigma);
77 const auto& nu_val =
value_of(nu_col);
78 const auto& mu_val =
value_of(mu_col);
79 const auto& sigma_val =
value_of(sigma_col);
82 =
check_cl(function,
"Random variable", y_val,
"not NaN");
83 auto y_not_nan = !isnan(y_val);
84 auto check_nu_positive_finite =
check_cl(
85 function,
"Degrees of freedom parameter", nu_val,
"positive finite");
86 auto nu_positive_finite = 0 < nu_val &&
isfinite(nu_val);
88 =
check_cl(function,
"Location parameter", mu_val,
"finite");
90 auto check_sigma_positive_finite
91 =
check_cl(function,
"Scale parameter", sigma_val,
"positive finite");
92 auto sigma_positive_finite = 0 < sigma_val &&
isfinite(sigma_val);
94 auto half_nu = 0.5 * nu_val;
95 auto y_scaled =
elt_divide(y_val - mu_val, sigma_val);
97 auto square_y_scaled_over_nu =
elt_divide(square_y_scaled, nu_val);
98 auto log1p_val =
log1p(square_y_scaled_over_nu);
101 auto logp2 = static_select<include_summand<propto, T_dof_cl>::value>(
106 logp2 -
log(sigma_val), logp2));
114 1 + square_y_scaled_over_nu)
119 auto sigma_deriv =
elt_divide(rep_deriv, sigma_val);
127 results(check_y_not_nan, check_nu_positive_finite, check_mu_finite,
128 check_sigma_positive_finite, logp_cl, y_deriv_cl, nu_deriv_cl,
129 mu_deriv_cl, sigma_deriv_cl)
130 =
expressions(y_not_nan, nu_positive_finite, mu_finite,
131 sigma_positive_finite, logp_expr,
147 partials<0>(ops_partials) = std::move(y_deriv_cl);
150 partials<1>(ops_partials) = std::move(nu_deriv_cl);
153 partials<2>(ops_partials) = std::move(mu_deriv_cl);
156 partials<3>(ops_partials) = std::move(sigma_deriv_cl);
158 return ops_partials.build(logp);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_dof_cl, T_loc_cl, T_scale_cl > student_t_lpdf(const T_y_cl &y, const T_dof_cl &nu, const T_loc_cl &mu, const T_scale_cl &sigma)
The log of the Student-t density for the given y, nu, mean, and scale parameter.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
static constexpr double LOG_SQRT_PI
The natural logarithm of the square root of , .
fvar< T > log1p(const fvar< T > &x)
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...