1#ifndef STAN_MATH_OPENCL_PRIM_SKEW_NORMAL_LPDF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_SKEW_NORMAL_LPDF_HPP 
   36template <
bool propto, 
typename T_y_cl, 
typename T_loc_cl, 
typename T_scale_cl,
 
   39              T_y_cl, T_loc_cl, T_scale_cl, T_shape_cl>* = 
nullptr,
 
   41                                        T_shape_cl>* = 
nullptr>
 
   43    const T_y_cl& y, 
const T_loc_cl& mu, 
const T_scale_cl& sigma,
 
   44    const T_shape_cl& alpha) {
 
   45  static constexpr const char* function = 
"skew_normal_lpdf(OpenCL)";
 
   46  using T_partials_return
 
   52                         mu, 
"Scale parameter", sigma, 
"Shape paramter", alpha);
 
   53  const size_t N = 
max_size(y, mu, sigma, alpha);
 
   68  const auto& mu_val = 
value_of(mu_col);
 
   69  const auto& sigma_val = 
value_of(sigma_col);
 
   70  const auto& alpha_val = 
value_of(alpha_col);
 
   73      = 
check_cl(function, 
"Random variable", y_val, 
"not NaN");
 
   74  auto y_not_nan = !isnan(y_val);
 
   76      = 
check_cl(function, 
"Location parameter", mu_val, 
"finite");
 
   78  auto check_sigma_positive
 
   79      = 
check_cl(function, 
"Scale parameter", sigma_val, 
"positive");
 
   80  auto sigma_positive = 0 < sigma_val;
 
   81  auto check_alpha_finite
 
   82      = 
check_cl(function, 
"Shape parameter", alpha_val, 
"finite");
 
   83  auto alpha_finite = 
isfinite(alpha_val);
 
   86  auto y_minus_mu_over_sigma = 
elt_multiply((y_val - mu_val), inv_sigma);
 
   87  auto log_erfc_alpha_z = 
log(
 
   90  auto logp1 = log_erfc_alpha_z;
 
   91  auto logp2 = static_select<include_summand<propto, T_scale_cl>::value>(
 
   92      logp1 - 
log(sigma_val), logp1);
 
   97              - 
elt_multiply(y_minus_mu_over_sigma, y_minus_mu_over_sigma)
 
  105      y_minus_mu_over_sigma - 
elt_multiply(deriv_logerf, alpha_val), inv_sigma);
 
  109                                  y_minus_mu_over_sigma)
 
  112  auto alpha_deriv = 
elt_multiply(deriv_logerf, y_minus_mu_over_sigma);
 
  120  results(check_y_not_nan, check_mu_finite, check_sigma_positive,
 
  121          check_alpha_finite, logp_cl, y_deriv_cl, mu_deriv_cl, sigma_deriv_cl,
 
  123      = 
expressions(y_not_nan, mu_finite, sigma_positive, alpha_finite,
 
  124                    logp_expr, 
calc_if<is_autodiff_v<T_y_cl>>(-y_loc_deriv),
 
  125                    calc_if<is_autodiff_v<T_loc_cl>>(y_loc_deriv),
 
  126                    calc_if<is_autodiff_v<T_scale_cl>>(sigma_deriv),
 
  127                    calc_if<is_autodiff_v<T_shape_cl>>(alpha_deriv));
 
  138  if constexpr (is_autodiff_v<T_y_cl>) {
 
  139    partials<0>(ops_partials) = std::move(y_deriv_cl);
 
  141  if constexpr (is_autodiff_v<T_loc_cl>) {
 
  142    partials<1>(ops_partials) = std::move(mu_deriv_cl);
 
  144  if constexpr (is_autodiff_v<T_scale_cl>) {
 
  145    partials<2>(ops_partials) = std::move(sigma_deriv_cl);
 
  147  if constexpr (is_autodiff_v<T_shape_cl>) {
 
  148    partials<3>(ops_partials) = std::move(alpha_deriv_cl);
 
  150  return ops_partials.build(logp);
 
Represents an arithmetic matrix on the OpenCL device.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_y_cl, T_loc_cl, T_scale_cl, T_shape_cl > skew_normal_lpdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma, const T_shape_cl &alpha)
The log of the skew normal density for the specified scalar(s) given the specified mean(s),...
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
static constexpr double SQRT_TWO_OVER_SQRT_PI
The square root of 2 divided by the square root of , .
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log(const fvar< T > &x)
 
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
 
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
fvar< T > erfc(const fvar< T > &x)
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
static constexpr double HALF_LOG_TWO_PI
The value of half the natural logarithm , .
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > exp(const fvar< T > &x)
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
 
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...