1#ifndef STAN_MATH_OPENCL_PRIM_DOUBLE_SKEW_DOUBLE_EXPONENTIAL_LCDF_HPP
2#define STAN_MATH_OPENCL_PRIM_DOUBLE_SKEW_DOUBLE_EXPONENTIAL_LCDF_HPP
30template <
typename T_y_cl,
typename T_loc_cl,
typename T_scale_cl,
31 typename T_skewness_cl,
33 T_y_cl, T_loc_cl, T_scale_cl, T_skewness_cl>* =
nullptr,
35 T_skewness_cl>* =
nullptr>
36return_type_t<T_y_cl, T_loc_cl, T_scale_cl, T_skewness_cl>
38 const T_scale_cl& sigma,
39 const T_skewness_cl& tau) {
40 static constexpr const char* function
41 =
"skew_double_exponential_lcdf(OpenCL)";
42 using T_partials_return
48 mu,
"Shape parameter", sigma,
"Skewness parameter",
50 const size_t N =
max_size(y, mu, sigma, tau);
61 const auto& mu_val =
value_of(mu_col);
62 const auto& sigma_val =
value_of(sigma_col);
63 const auto& tau_val =
value_of(tau_col);
66 =
check_cl(function,
"Random variable", y_val,
"not NaN");
67 auto y_not_nan_expr = !isnan(y_val);
69 =
check_cl(function,
"Location parameter", mu_val,
"finite");
70 auto mu_finite_expr =
isfinite(mu_val);
71 auto check_sigma_positive_finite
72 =
check_cl(function,
"Scale parameter", sigma_val,
"positive finite");
73 auto sigma_positive_finite_expr = 0.0 < sigma_val &&
isfinite(sigma_val);
74 auto check_tau_bounded =
check_cl(function,
"Skewness parameter", tau_val,
75 "in the interval [0, 1]");
76 auto tau_bounded_expr = 0.0 < tau_val && tau_val <= 1.0;
79 auto y_m_mu = y_val - mu_val;
80 auto diff_sign =
sign(y_m_mu);
81 auto diff_sign_smaller_0 = diff_sign < 0;
82 auto abs_diff_y_mu =
fabs(y_m_mu);
83 auto abs_diff_y_mu_over_sigma =
elt_multiply(abs_diff_y_mu, inv_sigma);
86 abs_diff_y_mu_over_sigma);
87 auto tau_minus_1 = tau_val - 1.0;
88 auto inv_exp_2_expo_tau =
elt_divide(1.0,
exp(2.0 * expo) + tau_minus_1);
94 auto cond = y_val < mu_val;
100 auto mu_deriv = -y_deriv;
116 results(check_y_not_nan, check_mu_finite, check_sigma_positive_finite,
117 check_tau_bounded, lcdf_cl, y_deriv_cl, mu_deriv_cl, sigma_deriv_cl,
119 =
expressions(y_not_nan_expr, mu_finite_expr, sigma_positive_finite_expr,
120 tau_bounded_expr, lcdf_expr,
132 partials<0>(ops_partials) = std::move(y_deriv_cl);
135 partials<1>(ops_partials) = std::move(mu_deriv_cl);
138 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
141 partials<3>(ops_partials) = std::move(tau_deriv_cl);
144 return ops_partials.build(lcdf);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl, T_skewness_cl > skew_double_exponential_lcdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma, const T_skewness_cl &tau)
Returns the skew double exponential cumulative density function.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
fvar< T > log1m_exp(const fvar< T > &x)
Return the natural logarithm of one minus the exponentiation of the specified argument.
auto sign(const T &x)
Returns signs of the arguments.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > log1m(const fvar< T > &x)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > fabs(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...