1#ifndef STAN_MATH_OPENCL_PRIM_NEG_BINOMIAL_2_LOG_LPMF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_NEG_BINOMIAL_2_LOG_LPMF_HPP 
   36template <
bool propto, 
typename T_n_cl, 
typename T_log_location_cl,
 
   37          typename T_precision_cl,
 
   39              T_n_cl, T_log_location_cl, T_precision_cl>* = 
nullptr,
 
   41                                        T_precision_cl>* = 
nullptr>
 
   42inline return_type_t<T_n_cl, T_log_location_cl, T_precision_cl>
 
   44                        const T_precision_cl& phi) {
 
   45  static constexpr const char* function = 
"neg_binomial_2_log_lpmf(OpenCL)";
 
   46  using T_partials_return
 
   52                         "Log location parameter", eta, 
"Precision parameter",
 
   54  const size_t N = 
max_size(n, eta, phi);
 
   59                                 T_precision_cl>::value) {
 
   66  const auto& eta_val = 
value_of(eta_col);
 
   67  const auto& phi_val = 
value_of(phi_col);
 
   69  auto check_n_nonnegative
 
   70      = 
check_cl(function, 
"Failures variable", n, 
"nonnegative");
 
   71  auto n_nonnegative = n >= 0;
 
   73      = 
check_cl(function, 
"Log location parameter", eta_val, 
"finite");
 
   75  auto check_phi_positive_finite
 
   76      = 
check_cl(function, 
"Precision parameter", phi_val, 
"positive finite");
 
   77  auto phi_positive_finite = 0 < phi_val && 
isfinite(phi_val);
 
   79  auto log_phi = 
log(phi_val);
 
   80  auto exp_eta = 
exp(eta_val);
 
   81  auto exp_eta_over_exp_eta_phi
 
   83  auto log1p_exp_eta_m_logphi = 
log1p_exp(eta_val - log_phi);
 
   84  auto n_plus_phi = n + phi_val;
 
   86  auto logp1 = -
elt_multiply(phi_val, log1p_exp_eta_m_logphi)
 
   88  auto logp2 = static_select<include_summand<propto, T_precision_cl>::value>(
 
   94  auto eta_deriv = n - 
elt_multiply(n_plus_phi, exp_eta_over_exp_eta_phi);
 
   95  auto phi_deriv = exp_eta_over_exp_eta_phi - 
elt_divide(n, exp_eta + phi_val)
 
   96                   - log1p_exp_eta_m_logphi - 
digamma(phi_val)
 
  103  results(check_n_nonnegative, check_eta_finite, check_phi_positive_finite,
 
  104          logp_cl, eta_deriv_cl, phi_deriv_cl)
 
  105      = 
expressions(n_nonnegative, eta_finite, phi_positive_finite, logp_expr,
 
  106                    calc_if<is_autodiff_v<T_log_location_cl>>(eta_deriv),
 
  107                    calc_if<is_autodiff_v<T_precision_cl>>(phi_deriv));
 
  113  if constexpr (is_autodiff_v<T_log_location_cl>) {
 
  114    partials<0>(ops_partials) = std::move(eta_deriv_cl);
 
  116  if constexpr (is_autodiff_v<T_precision_cl>) {
 
  117    partials<1>(ops_partials) = std::move(phi_deriv_cl);
 
  119  return ops_partials.build(logp);
 
Represents an arithmetic matrix on the OpenCL device.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
binomial_coefficient_log_< as_operation_cl_t< T1 >, as_operation_cl_t< T2 > > binomial_coefficient_log(T1 &&a, T2 &&b)
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_n_cl, T_log_location_cl, T_precision_cl > neg_binomial_2_log_lpmf(const T_n_cl &n, const T_log_location_cl &eta, const T_precision_cl &phi)
The log of the log transformed negative binomial density for the specified scalars given the specifie...
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log(const fvar< T > &x)
 
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
 
fvar< T > log1p_exp(const fvar< T > &x)
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
 
fvar< T > exp(const fvar< T > &x)
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
 
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...