1#ifndef STAN_MATH_OPENCL_PRIM_INV_GAMMA_LPDF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_INV_GAMMA_LPDF_HPP 
   35    bool propto, 
typename T_y_cl, 
typename T_shape_cl, 
typename T_scale_cl,
 
   37                                                T_scale_cl>* = 
nullptr,
 
   38    require_any_not_stan_scalar_t<T_y_cl, T_shape_cl, T_scale_cl>* = 
nullptr>
 
   40    const T_y_cl& y, 
const T_shape_cl& alpha, 
const T_scale_cl& 
beta) {
 
   43  static constexpr const char* function = 
"inv_gamma_lpdf(OpenCL)";
 
   47                         "First shape parameter", alpha,
 
   48                         "Second shape parameter", 
beta);
 
   63  const auto& alpha_val = 
value_of(alpha_col);
 
   64  const auto& beta_val = 
value_of(beta_col);
 
   69      = 
check_cl(function, 
"Random variable", y_val, 
"not NaN");
 
   70  auto y_not_nan = !isnan(y_val);
 
   71  auto check_alpha_pos_finite
 
   72      = 
check_cl(function, 
"Shape parameter", alpha_val, 
"positive finite");
 
   73  auto alpha_pos_finite = alpha_val > 0 && 
isfinite(alpha_val);
 
   74  auto check_beta_pos_finite
 
   75      = 
check_cl(function, 
"Scale parameter", beta_val, 
"positive finite");
 
   76  auto beta_pos_finite = beta_val > 0 && 
isfinite(beta_val);
 
   78  auto any_y_nonpositive = 
colwise_max(cast<char>(y_val <= 0));
 
   79  auto log_y = 
log(y_val);
 
   80  auto log_beta = 
log(beta_val);
 
   83  auto logp1 = static_select<include_summand<propto, T_shape_cl>::value>(
 
   86      = static_select<include_summand<propto, T_shape_cl, T_scale_cl>::value>(
 
   89      = static_select<include_summand<propto, T_y_cl, T_shape_cl>::value>(
 
   97  auto alpha_deriv = log_beta - 
digamma(alpha_val) - log_y;
 
   98  auto beta_deriv = 
elt_divide(alpha_val, beta_val) - inv_y;
 
  106  results(check_alpha_pos_finite, check_beta_pos_finite, check_y_not_nan,
 
  107          any_y_nonpositive_cl, logp_cl, y_deriv_cl, alpha_deriv_cl,
 
  109      = 
expressions(alpha_pos_finite, beta_pos_finite, y_not_nan,
 
  110                    any_y_nonpositive, logp_expr,
 
  111                    calc_if<is_autodiff_v<T_y_cl>>(y_deriv),
 
  112                    calc_if<is_autodiff_v<T_shape_cl>>(alpha_deriv),
 
  113                    calc_if<is_autodiff_v<T_scale_cl>>(beta_deriv));
 
  121  if constexpr (is_autodiff_v<T_y_cl>) {
 
  122    partials<0>(ops_partials) = std::move(y_deriv_cl);
 
  124  if constexpr (is_autodiff_v<T_shape_cl>) {
 
  125    partials<1>(ops_partials) = std::move(alpha_deriv_cl);
 
  127  if constexpr (is_autodiff_v<T_scale_cl>) {
 
  128    partials<2>(ops_partials) = std::move(beta_deriv_cl);
 
  131  return ops_partials.build(logp);
 
Represents an arithmetic matrix on the OpenCL device.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
auto constant(const T a, int rows, int cols)
Matrix of repeated values in kernel generator expressions.
 
auto colwise_max(T &&a)
Column wise max - reduction of a kernel generator expression.
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_y_cl, T_shape_cl, T_scale_cl > inv_gamma_lpdf(const T_y_cl &y, const T_shape_cl &alpha, const T_scale_cl &beta)
The log of an inverse gamma density for y with the specified shape and scale parameters.
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
static constexpr double LOG_ZERO
The natural logarithm of 0, .
 
constexpr bool any(T x)
Return true if any values in the input are true.
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log(const fvar< T > &x)
 
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
 
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...