Automatic Differentiation
 
Loading...
Searching...
No Matches
frechet_cdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_FRECHET_CDF_HPP
2#define STAN_MATH_OPENCL_PRIM_FRECHET_CDF_HPP
3#ifdef STAN_OPENCL
4
12
13namespace stan {
14namespace math {
15
29template <
30 typename T_y_cl, typename T_shape_cl, typename T_scale_cl,
32 T_scale_cl>* = nullptr,
33 require_any_not_stan_scalar_t<T_y_cl, T_shape_cl, T_scale_cl>* = nullptr>
35 const T_y_cl& y, const T_shape_cl& alpha, const T_scale_cl& sigma) {
36 static constexpr const char* function = "frechet_cdf(OpenCL)";
38 using std::isfinite;
39 using std::isnan;
40
41 check_consistent_sizes(function, "Random variable", y, "Shape parameter",
42 alpha, "Scale parameter", sigma);
43 const size_t N = max_size(y, alpha, sigma);
44 if (N == 0) {
45 return 1.0;
46 }
47
48 const auto& y_col = as_column_vector_or_scalar(y);
49 const auto& alpha_col = as_column_vector_or_scalar(alpha);
50 const auto& sigma_col = as_column_vector_or_scalar(sigma);
51
52 const auto& y_val = value_of(y_col);
53 const auto& alpha_val = value_of(alpha_col);
54 const auto& sigma_val = value_of(sigma_col);
55
56 auto check_y_positive
57 = check_cl(function, "Random variable", y_val, "positive");
58 auto y_positive = y_val > 0;
59 auto check_alpha_positive_finite
60 = check_cl(function, "Shape parameter", alpha_val, "positive finite");
61 auto alpha_positive_finite_expr = alpha_val > 0 && isfinite(alpha_val);
62 auto check_sigma_positive_finite
63 = check_cl(function, "Scale parameter", sigma_val, "positive finite");
64 auto sigma_positive_finite_expr = 0 < sigma_val && isfinite(sigma_val);
65
66 auto pow_n = pow(elt_divide(sigma_val, y_val), alpha_val);
67 auto cdf_n = exp(-pow_n);
68 auto cdf_expr = colwise_prod(cdf_n);
69
70 auto pow_n_alpha = elt_multiply(pow_n, alpha_val);
71 auto y_deriv_tmp = elt_divide(pow_n_alpha, y_val);
72 auto alpha_deriv_tmp = elt_multiply(pow_n, log(elt_divide(y_val, sigma_val)));
73 auto sigma_deriv_tmp = elt_divide(pow_n_alpha, -sigma_val);
74
75 matrix_cl<double> cdf_cl;
76 matrix_cl<double> y_deriv_cl;
77 matrix_cl<double> alpha_deriv_cl;
78 matrix_cl<double> sigma_deriv_cl;
79
80 results(check_y_positive, check_alpha_positive_finite,
81 check_sigma_positive_finite, cdf_cl, y_deriv_cl, alpha_deriv_cl,
82 sigma_deriv_cl)
83 = expressions(y_positive, alpha_positive_finite_expr,
84 sigma_positive_finite_expr, cdf_expr,
86 calc_if<!is_constant<T_shape_cl>::value>(alpha_deriv_tmp),
87 calc_if<!is_constant<T_scale_cl>::value>(sigma_deriv_tmp));
88
89 T_partials_return cdf = (from_matrix_cl(cdf_cl)).prod();
90
91 auto alpha_deriv = alpha_deriv_cl * cdf;
92 auto y_deriv = y_deriv_cl * cdf;
93 auto sigma_deriv = sigma_deriv_cl * cdf;
94
95 results(alpha_deriv_cl, y_deriv_cl, sigma_deriv_cl)
99
100 auto ops_partials = make_partials_propagator(y_col, alpha_col, sigma_col);
101
103 partials<0>(ops_partials) = std::move(y_deriv_cl);
104 }
106 partials<1>(ops_partials) = std::move(alpha_deriv_cl);
107 }
109 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
110 }
111 return ops_partials.build(cdf);
112}
113
114} // namespace math
115} // namespace stan
116#endif
117#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
auto colwise_prod(T &&a)
Column wise product - reduction of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
Definition calc_if.hpp:121
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
return_type_t< T_y_cl, T_shape_cl, T_scale_cl > frechet_cdf(const T_y_cl &y, const T_shape_cl &alpha, const T_scale_cl &sigma)
Returns the frechet cumulative distribution function for the given location, and scale.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
value_type_t< T > prod(const T &m)
Calculates product of given kernel generator expression elements.
Definition prod.hpp:21
auto pow(const T1 &x1, const T2 &x2)
Definition pow.hpp:32
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
fvar< T > log(const fvar< T > &x)
Definition log.hpp:15
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:13
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Definition std_isnan.hpp:18
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...