1#ifndef STAN_MATH_OPENCL_PRIM_EXP_MOD_NORMAL_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_EXP_MOD_NORMAL_LPDF_HPP
33template <
bool propto,
typename T_y_cl,
typename T_loc_cl,
typename T_scale_cl,
34 typename T_inv_scale_cl,
36 T_y_cl, T_loc_cl, T_scale_cl, T_inv_scale_cl>* =
nullptr,
38 T_inv_scale_cl>* =
nullptr>
40 const T_y_cl& y,
const T_loc_cl& mu,
const T_scale_cl& sigma,
41 const T_inv_scale_cl& lambda) {
42 static constexpr const char* function =
"exp_mod_normal_lpdf(OpenCL)";
43 using T_partials_return
49 mu,
"Scale parameter", sigma,
"Inv_scale paramter",
51 const size_t N =
max_size(y, mu, sigma, lambda);
56 T_inv_scale_cl>::value) {
66 const auto& mu_val =
value_of(mu_col);
67 const auto& sigma_val =
value_of(sigma_col);
68 const auto& lambda_val =
value_of(lambda_col);
71 =
check_cl(function,
"Random variable", y_val,
"not_nan");
72 auto y_not_nan_expr = !isnan(y_val);
74 =
check_cl(function,
"Location parameter", mu_val,
"finite");
75 auto mu_finite_expr =
isfinite(mu_val);
76 auto check_sigma_positive_finite
77 =
check_cl(function,
"Scale parameter", sigma_val,
"positive finite");
78 auto sigma_positive_finite_expr =
isfinite(sigma_val) && sigma_val > 0;
79 auto check_lambda_positive_finite =
check_cl(function,
"Inv_scale parameter",
80 lambda_val,
"positive finite");
81 auto lambda_positive_finite_expr =
isfinite(lambda_val) && lambda_val > 0;
83 auto inv_sigma_expr =
elt_divide(1.0, sigma_val);
85 auto lambda_sigma_sq_expr =
elt_multiply(lambda_val, sigma_sq_expr);
86 auto mu_minus_y_expr = mu_val - y_val;
87 auto inner_term_expr =
elt_multiply(mu_minus_y_expr + lambda_sigma_sq_expr,
89 auto erfc_calc_expr =
erfc(inner_term_expr);
91 =
elt_multiply(lambda_val, mu_minus_y_expr + 0.5 * lambda_sigma_sq_expr)
92 +
log(erfc_calc_expr);
95 logp1_expr +
log(lambda_val), logp1_expr));
97 auto deriv_logerfc_expr
102 = lambda_val +
elt_multiply(deriv_logerfc_expr, inv_sigma_expr);
103 auto deriv_sigma_expr
107 (lambda_val -
elt_divide(mu_minus_y_expr, sigma_sq_expr)));
108 auto deriv_lambda_expr =
elt_divide(1.0, lambda_val) + lambda_sigma_sq_expr
118 results(check_y_not_nan, check_mu_finite, check_sigma_positive_finite,
119 check_lambda_positive_finite, logp_cl, y_deriv_cl, mu_deriv_cl,
120 sigma_deriv_cl, lambda_deriv_cl)
122 y_not_nan_expr, mu_finite_expr, sigma_positive_finite_expr,
123 lambda_positive_finite_expr, logp_expr,
137 partials<0>(ops_partials) = std::move(y_deriv_cl);
140 partials<1>(ops_partials) = std::move(mu_deriv_cl);
143 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
146 partials<3>(ops_partials) = std::move(lambda_deriv_cl);
148 return ops_partials.build(logp);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl, T_inv_scale_cl > exp_mod_normal_lpdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma, const T_inv_scale_cl &lambda)
Returns the log PMF of the exp mod normal distribution.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
require_any_not_t< is_stan_scalar< std::decay_t< Types > >... > require_any_not_stan_scalar_t
Require at least one of the types do not satisfy is_stan_scalar.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double SQRT_TWO_OVER_SQRT_PI
The square root of 2 divided by the square root of , .
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
static constexpr double LOG_TWO
The natural logarithm of 2, .
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > erfc(const fvar< T > &x)
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > exp(const fvar< T > &x)
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...