1#ifndef STAN_MATH_OPENCL_PRIM_DOUBLE_EXPONENTIAL_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_DOUBLE_EXPONENTIAL_LPDF_HPP
32 bool propto,
typename T_y_cl,
typename T_loc_cl,
typename T_scale_cl,
34 T_scale_cl>* =
nullptr,
35 require_any_not_stan_scalar_t<T_y_cl, T_loc_cl, T_scale_cl>* =
nullptr>
37 const T_y_cl& y,
const T_loc_cl& mu,
const T_scale_cl& sigma) {
38 static constexpr const char* function =
"double_exponential_lpdf(OpenCL)";
43 mu,
"Shape parameter", sigma);
44 const size_t N =
max_size(y, mu, sigma);
57 const auto& mu_val =
value_of(mu_col);
58 const auto& sigma_val =
value_of(sigma_col);
60 auto check_y_finite =
check_cl(function,
"Random variable", y_val,
"finite");
61 auto y_finite_expr =
isfinite(y_val);
63 =
check_cl(function,
"Location parameter", mu_val,
"finite");
64 auto mu_finite_expr =
isfinite(mu_val);
65 auto check_sigma_positive_finite
66 =
check_cl(function,
"Scale parameter", sigma_val,
"positive finite");
67 auto sigma_positive_finite_expr = sigma_val > 0 &&
isfinite(sigma_val);
69 auto inv_sigma_expr =
elt_divide(1.0, sigma_val);
70 auto y_m_mu_expr = y_val - mu_val;
71 auto abs_diff_y_mu_expr =
fabs(y_m_mu_expr);
72 auto scaled_diff_expr =
elt_multiply(abs_diff_y_mu_expr, inv_sigma_expr);
76 scaled_diff_expr +
log(sigma_val), scaled_diff_expr));
78 auto sigma_deriv_expr =
elt_multiply(inv_sigma_expr, scaled_diff_expr - 1);
84 results(check_y_finite, check_mu_finite, check_sigma_positive_finite, logp_cl,
85 y_deriv_cl, mu_deriv_cl, sigma_deriv_cl)
86 =
expressions(y_finite_expr, mu_finite_expr, sigma_positive_finite_expr,
87 logp_expr, -rep_deriv_expr, rep_deriv_expr,
97 partials<0>(ops_partials) = std::move(y_deriv_cl);
100 partials<1>(ops_partials) = std::move(mu_deriv_cl);
103 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
106 return ops_partials.build(logp);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > double_exponential_lpdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the double exponential log probability density function.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
auto sign(const T &x)
Returns signs of the arguments.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
static constexpr double LOG_TWO
The natural logarithm of 2, .
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > fabs(const fvar< T > &x)
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...