1#ifndef STAN_MATH_OPENCL_PRIM_BINOMIAL_LPMF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_BINOMIAL_LPMF_HPP 
   31template <
bool propto, 
typename T_n_cl, 
typename T_N_cl, 
typename T_prob_cl,
 
   33                                                      T_prob_cl>* = 
nullptr,
 
   35              T_n_cl, T_N_cl, T_prob_cl>* = 
nullptr>
 
   37                                              const T_prob_cl& theta) {
 
   38  static constexpr const char* function = 
"binomial_lpmf(OpenCL)";
 
   43                         "Population size parameter", N,
 
   44                         "Probability parameter", theta);
 
   45  const size_t siz = 
max_size(n, N, theta);
 
   54  const auto& theta_val = 
value_of(theta_col);
 
   57      = 
check_cl(function, 
"Successes variable", n, 
"in the interval [0, N]");
 
   58  auto n_bounded = 0 <= n && n <= N;
 
   59  auto check_N_nonnegative
 
   60      = 
check_cl(function, 
"Population size variable", n, 
"nonnegative");
 
   61  auto N_nonnegative = N >= 0;
 
   62  auto check_theta_bounded = 
check_cl(function, 
"Probability parameter",
 
   63                                      theta_val, 
"in the interval [0, 1]");
 
   64  auto theta_bounded = 0.0 <= theta_val && theta_val <= 1.0;
 
   66  auto log1m_theta = 
log1p(-theta_val);
 
   69  auto n_is_zero = n == 0;
 
   70  auto N_is_zero = N == 0;
 
   72  auto N_minus_n = N - n;
 
   76             select(n_is_N, n_times_log_theta,
 
   77                    n_times_log_theta + 
elt_multiply(N_minus_n, log1m_theta))));
 
   85  auto one_m_theta = 1.0 - theta_val;
 
   89             select(n_is_N, n_div_theta,
 
   90                    n_div_theta - 
elt_divide(N_minus_n, one_m_theta))));
 
   97  constexpr bool need_sums
 
   98      = is_autodiff_v<T_prob_cl> && is_stan_scalar_v<T_prob_cl>;
 
   99  constexpr bool need_deriv
 
  100      = is_autodiff_v<T_prob_cl> && !is_stan_scalar_v<T_prob_cl>;
 
  102  results(check_n_bounded, check_N_nonnegative, check_theta_bounded, logp_cl,
 
  103          sum_n_cl, sum_N_cl, deriv_cl)
 
  104      = 
expressions(n_bounded, N_nonnegative, theta_bounded, logp_expr,
 
  105                    calc_if<need_sums>(sum_n_expr),
 
  106                    calc_if<need_sums>(sum_N_expr),
 
  107                    calc_if<need_deriv>(deriv_theta));
 
  112  if constexpr (is_autodiff_v<T_prob_cl>) {
 
  113    if constexpr (need_sums) {
 
  116      double theta_dbl = theta_val;
 
  117      double& partial = partials<0>(ops_partials)[0];
 
  120          partial = -sum_N / (1.0 - theta_dbl);
 
  121        } 
else if (sum_n == sum_N) {
 
  122          partial = sum_n / theta_dbl;
 
  124          partial = sum_n / theta_dbl - (sum_N - sum_n) / (1.0 - theta_dbl);
 
  128      partials<0>(ops_partials) = std::move(deriv_cl);
 
  132  return ops_partials.build(logp);
 
Represents an arithmetic matrix on the OpenCL device.
 
require_any_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_any_nonscalar_prim_or_rev_kernel_expression_t
Require any of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
binomial_coefficient_log_< as_operation_cl_t< T1 >, as_operation_cl_t< T2 > > binomial_coefficient_log(T1 &&a, T2 &&b)
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_prob_cl > binomial_lpmf(const T_n_cl &n, const T_N_cl N, const T_prob_cl &theta)
Returns the log PMF for the binomial distribution evaluated at the specified success,...
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log(const fvar< T > &x)
 
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
fvar< T > log1p(const fvar< T > &x)
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
 
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...