1#ifndef STAN_MATH_OPENCL_PRIM_BETA_BINOMIAL_LPMF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_BETA_BINOMIAL_LPMF_HPP 
   38    bool propto, 
typename T_n_cl, 
typename T_N_cl, 
typename T_size1_cl,
 
   41                                                T_size2_cl>* = 
nullptr,
 
   42    require_any_not_stan_scalar_t<T_n_cl, T_size1_cl, T_size2_cl>* = 
nullptr>
 
   44    const T_n_cl& n, 
const T_N_cl N, 
const T_size1_cl& alpha,
 
   45    const T_size2_cl& 
beta) {
 
   47  static constexpr const char* function = 
"beta_binomial_lpmf(OpenCL)";
 
   50                         "Population size parameter", N,
 
   51                         "First prior sample size parameter", alpha,
 
   52                         "Second prior sample size parameter", 
beta);
 
   64  const auto& alpha_val = 
value_of(alpha_col);
 
   65  const auto& beta_val = 
value_of(beta_col);
 
   67  auto check_N_nonnegative
 
   68      = 
check_cl(function, 
"Population size parameter", N, 
"nonnegative");
 
   69  auto N_nonnegative = N >= 0;
 
   70  auto check_alpha_pos_finite
 
   71      = 
check_cl(function, 
"First prior sample size parameter", alpha_val,
 
   73  auto alpha_pos_finite = alpha_val > 0.0 && 
isfinite(alpha_val);
 
   74  auto check_beta_pos_finite
 
   75      = 
check_cl(function, 
"First prior sample size parameter", beta_val,
 
   77  auto beta_pos_finite = beta_val > 0.0 && 
isfinite(beta_val);
 
   79  auto return_neg_inf = (n < 0 || n > N) + 
constant(0, N_size, 1);
 
   81      = 
lbeta(n + alpha_val, N - n + beta_val) - 
lbeta(alpha_val, beta_val);
 
   83      = 
digamma(alpha_val + beta_val) - 
digamma(N + alpha_val + beta_val);
 
   87  auto alpha_deriv = 
digamma(n + alpha_val) + digamma_diff - 
digamma(alpha_val);
 
   96  results(check_N_nonnegative, check_alpha_pos_finite, check_beta_pos_finite,
 
   97          logp_cl, alpha_deriv_cl, beta_deriv_cl)
 
   98      = 
expressions(N_nonnegative, alpha_pos_finite, beta_pos_finite, logp_expr,
 
   99                    calc_if<is_autodiff_v<T_size1_cl>>(alpha_deriv),
 
  100                    calc_if<is_autodiff_v<T_size2_cl>>(beta_deriv));
 
  109  if constexpr (is_autodiff_v<T_size1_cl>) {
 
  110    partials<0>(ops_partials) = std::move(alpha_deriv_cl);
 
  112  if constexpr (is_autodiff_v<T_size2_cl>) {
 
  113    partials<1>(ops_partials) = std::move(beta_deriv_cl);
 
  116  return ops_partials.build(logp);
 
Represents an arithmetic matrix on the OpenCL device.
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
binomial_coefficient_log_< as_operation_cl_t< T1 >, as_operation_cl_t< T2 > > binomial_coefficient_log(T1 &&a, T2 &&b)
 
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
 
auto constant(const T a, int rows, int cols)
Matrix of repeated values in kernel generator expressions.
 
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_n_cl, T_size1_cl, T_size2_cl > beta_binomial_lpmf(const T_n_cl &n, const T_N_cl N, const T_size1_cl &alpha, const T_size2_cl &beta)
Returns the log PMF of the Beta-Binomial distribution with given population size, prior success,...
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
static constexpr double LOG_ZERO
The natural logarithm of 0, .
 
constexpr bool any(T x)
Return true if any values in the input are true.
 
fvar< T > lbeta(const fvar< T > &x1, const fvar< T > &x2)
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
 
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
 
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...