1#ifndef STAN_MATH_OPENCL_PRIM_BERNOULLI_LOGIT_GLM_LPMF_HPP 
    2#define STAN_MATH_OPENCL_PRIM_BERNOULLI_LOGIT_GLM_LPMF_HPP 
   52template <
bool propto, 
typename T_x_cl, 
typename T_y_cl, 
typename T_alpha_cl,
 
   55              T_y_cl, T_x_cl, T_alpha_cl, T_beta_cl>* = 
nullptr>
 
   57    const T_y_cl& y, 
const T_x_cl& x, 
const T_alpha_cl& alpha,
 
   58    const T_beta_cl& 
beta) {
 
   59  static constexpr const char* function = 
"bernoulli_logit_glm_lpmf(OpenCL)";
 
   65  const size_t N = x.rows();
 
   66  const size_t M = x.cols();
 
   68  if constexpr (is_y_vector) {
 
   74  if constexpr (is_alpha_vector) {
 
   89  const auto& alpha_val = 
value_of(alpha);
 
   93  auto signs_expr = 2 * y_val - 1;
 
   94  auto ytheta_signs_expr = 
elt_multiply(ytheta_expr, signs_expr);
 
   95  auto exp_m_ytheta_expr = 
exp(-ytheta_signs_expr);
 
   96  const double cutoff = 20.0;
 
   97  auto high_bound_expr = ytheta_signs_expr > cutoff;
 
   98  auto low_bound_expr = ytheta_signs_expr < -cutoff;
 
   99  auto err_cond_expr = y_val < 0 || y_val > 1;
 
  102                           select(high_bound_expr, -exp_m_ytheta_expr,
 
  103                                  select(low_bound_expr, ytheta_signs_expr,
 
  104                                         -
log1p(exp_m_ytheta_expr)))));
 
  105  auto theta_derivative_expr
 
  106      = 
select(high_bound_expr, -exp_m_ytheta_expr,
 
  107               select(low_bound_expr, signs_expr,
 
  109                                 (exp_m_ytheta_expr + 1))));
 
  111  const int wgs = logp_expr.rows();
 
  113  constexpr bool need_theta_derivative
 
  114      = is_any_autodiff_v<T_x_cl, T_beta_cl, T_alpha_cl>;
 
  116  constexpr bool need_theta_derivative_sum
 
  117      = need_theta_derivative && !is_alpha_vector;
 
  122      logp_expr, calc_if<need_theta_derivative>(theta_derivative_expr),
 
  123      calc_if<need_theta_derivative_sum>(
colwise_sum(theta_derivative_expr)));
 
  126  if (!std::isfinite(logp)) {
 
  128                     "in the interval [0, 1]"),
 
  129            check_cl(function, 
"Intercept", alpha_val, 
"finite"))
 
  131    check_cl(function, 
"Weight vector", beta_val, 
"finite")
 
  133    check_cl(function, 
"Matrix of independent variables", x_val, 
"finite")
 
  139  if constexpr (is_autodiff_v<T_x_cl>) {
 
  140    partials<0>(ops_partials)
 
  143  if constexpr (is_autodiff_v<T_alpha_cl>) {
 
  144    if constexpr (is_alpha_vector) {
 
  145      partials<1>(ops_partials) = theta_derivative_cl;
 
  147      partials<1>(ops_partials)[0]
 
  151  if constexpr (is_autodiff_v<T_beta_cl>) {
 
  154        theta_derivative_cl.
buffer(), 1, theta_derivative_cl.
rows());
 
  156        = theta_derivative_transpose_cl * x_val;
 
  157    partials<2>(ops_partials)
 
  159                            edge3_partials_transpose_cl.
cols(), 1);
 
  160    if (beta_val.rows() != 0) {
 
  161      edge<2>(ops_partials)
 
  162          .partials_.add_write_event(
 
  166  return ops_partials.build(logp);
 
const cl::Buffer & buffer() const
 
const tbb::concurrent_vector< cl::Event > & write_events() const
Get the events from the event stacks.
 
Represents an arithmetic matrix on the OpenCL device.
 
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
 
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
 
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
 
auto transpose(Arg &&a)
Transposes a kernel generator expression.
 
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
 
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
 
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
 
return_type_t< T_x_cl, T_alpha_cl, T_beta_cl > bernoulli_logit_glm_lpmf(const T_y_cl &y, const T_x_cl &x, const T_alpha_cl &alpha, const T_beta_cl &beta)
Returns the log PMF of the Generalized Linear Model (GLM) with Bernoulli distribution and logit link ...
 
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
 
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
 
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
 
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
 
static constexpr double NOT_A_NUMBER
(Quiet) not-a-number value.
 
T value_of(const fvar< T > &v)
Return the value of the specified variable.
 
fvar< T > log1p(const fvar< T > &x)
 
auto matrix_vector_multiply(T_matrix &&matrix, T_vector &&vector)
Multiplies a matrix and a vector on an OpenCL device.
 
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
 
void check_size_match(const char *function, const char *name_i, T_size1 i, const char *name_j, T_size2 j)
Check if the provided sizes match.
 
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
 
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
 
fvar< T > exp(const fvar< T > &x)
 
typename partials_return_type< Args... >::type partials_return_t
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
Checks if decayed type is a var, fvar, or arithmetic.
 
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...