1#ifndef STAN_MATH_OPENCL_KERNELS_ORDERED_LOGISTIC_LPMF_HPP 
    2#define STAN_MATH_OPENCL_KERNELS_ORDERED_LOGISTIC_LPMF_HPP 
   12namespace opencl_kernels {
 
   15static constexpr const char* ordered_logistic_kernel_code = 
STRINGIFY(
 
   42        __global 
double* logp_global, __global 
double* lambda_derivative,
 
   43        __global 
double* cuts_derivative, 
const __global 
int* y_global,
 
   44        const __global 
double* lambda_global, 
const __global 
double* cuts,
 
   45        const int N_instances, 
const int N_classes, 
const int is_y_vector,
 
   46        const int is_cuts_matrix, 
const int need_lambda_derivative,
 
   47        const int need_cuts_derivative) {
 
   48      const int gid = get_global_id(0);
 
   49      const int lid = get_local_id(0);
 
   50      const int lsize = get_local_size(0);
 
   51      const int wg_id = get_group_id(0);
 
   52      const int ngroups = get_num_groups(0);
 
   54      __local 
double local_storage[LOCAL_SIZE_];
 
   60      int cuts_start = (N_classes - 1) * gid * is_cuts_matrix;
 
   63      if (gid < N_instances) {
 
   64        double lambda = lambda_global[gid];
 
   65        y = y_global[gid * is_y_vector];
 
   66        if (y < 1 || y > N_classes || !
isfinite(lambda)) {
 
   70              = y == N_classes ? INFINITY : cuts[cuts_start + y - 1];
 
   71          const double cut_y2 = y == 1 ? -INFINITY : cuts[cuts_start + y - 2];
 
   72          const double cut1 = lambda - cut_y1;
 
   73          const double cut2 = lambda - cut_y2;
 
   81          if (y != 1 && y != N_classes) {
 
   85          if (need_lambda_derivative || need_cuts_derivative) {
 
   86            double exp_cuts_diff = 
exp(cut_y2 - cut_y1);
 
   88            d1 -= exp_cuts_diff / (exp_cuts_diff - 1);
 
   89            d2 = 1 / (1 - exp_cuts_diff);
 
   92            if (need_lambda_derivative) {
 
   93              lambda_derivative[gid] = d1 - d2;
 
   98      if (need_cuts_derivative) {
 
  100          if (gid < N_instances) {
 
  101            for (
int i = 0; i < N_classes - 1; i++) {
 
  103                cuts_derivative[cuts_start + i] = d2;
 
  104              } 
else if (y - 2 == i) {
 
  105                cuts_derivative[cuts_start + i] = -d1;
 
  107                cuts_derivative[cuts_start + i] = 0.0;
 
  112          for (
int i = 0; i < N_classes - 1; i++) {
 
  113            local_storage[lid] = 0;
 
  114            if (gid < N_instances) {
 
  116                local_storage[lid] = d2;
 
  117              } 
else if (y - 2 == i) {
 
  118                local_storage[lid] = -d1;
 
  125            barrier(CLK_LOCAL_MEM_FENCE);
 
  126            for (
int step = lsize / REDUCTION_STEP_SIZE; 
step > 0;
 
  127                 step /= REDUCTION_STEP_SIZE) {
 
  129                for (
int i = 1; i < REDUCTION_STEP_SIZE; i++) {
 
  130                  local_storage[lid] += local_storage[lid + 
step * i];
 
  133              barrier(CLK_LOCAL_MEM_FENCE);
 
  136              cuts_derivative[(N_classes - 1) * wg_id + i] = local_storage[0];
 
  138            barrier(CLK_LOCAL_MEM_FENCE);
 
  142      local_storage[lid] = logp;
 
  143      barrier(CLK_LOCAL_MEM_FENCE);
 
  144      for (
int step = lsize / REDUCTION_STEP_SIZE; 
step > 0;
 
  145           step /= REDUCTION_STEP_SIZE) {
 
  147          for (
int i = 1; i < REDUCTION_STEP_SIZE; i++) {
 
  148            local_storage[lid] += local_storage[lid + 
step * i];
 
  151        barrier(CLK_LOCAL_MEM_FENCE);
 
  154        logp_global[wg_id] = local_storage[0];
 
  165const kernel_cl<out_buffer, out_buffer, out_buffer, in_buffer, in_buffer,
 
  166                in_buffer, int, int, int, int, int, 
int>
 
  168                     {log1p_exp_device_function, log1m_exp_device_function,
 
  169                      inv_logit_device_function, ordered_logistic_kernel_code},
 
  170                     {{
"REDUCTION_STEP_SIZE", 4}, {
"LOCAL_SIZE_", 64}});
 
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
 
const kernel_cl< out_buffer, out_buffer, out_buffer, in_buffer, in_buffer, in_buffer, int, int, int, int, int, int > ordered_logistic("ordered_logistic", {log1p_exp_device_function, log1m_exp_device_function, inv_logit_device_function, ordered_logistic_kernel_code}, {{"REDUCTION_STEP_SIZE", 4}, {"LOCAL_SIZE_", 64}})
See the docs for ordered_logistic() .
 
double log1m_exp(double a)
Calculates the natural logarithm of one minus the exponential of the specified value without overflow...
 
double log1p_exp(double a)
Calculates the log of 1 plus the exponential of the specified value without overflow.
 
double inv_logit(double x)
Returns the inverse logit function applied to the kernel generator expression.
 
T step(const T &y)
The step, or Heaviside, function.
 
fvar< T > exp(const fvar< T > &x)
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...