Loading [MathJax]/extensions/TeX/AMSsymbols.js
Stan Math Library
5.0.0
Automatic Differentiation
▼
Stan Math Library
Overview
▼
Contributor Guides
Developer Guide
Adding New Functions
Adding New Distributions
Common Pitfalls
Using requires for general overloads
Reverse Mode Types
Testing Automatic Differentiation Functions
Testing New Distributions
Add New Functions With Known Gradients
Adding New OpenCL Functions
Windows Development Tips
▼
Internal Docs
►
Probability Distributions
►
OpenCL
►
Compressed Sparse Row matrix format.
►
Type Traits
►
Available requires<> for overloading.
►
Eigen expressions
►
arena_matrix <br>
►
real <br>
►
Parallelism
(External Link) Stan Language Docs
(External Link) Stan Discourse
►
Stan Math Library Docs
►
Class List
•
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Modules
Pages
Loading...
Searching...
No Matches
neg_binomial_2_ccdf_log.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_PROB_NEG_BINOMIAL_2_CCDF_LOG_HPP
2
#define STAN_MATH_PRIM_PROB_NEG_BINOMIAL_2_CCDF_LOG_HPP
3
4
#include <
stan/math/prim/meta.hpp
>
5
#include <
stan/math/prim/prob/neg_binomial_2_lccdf.hpp
>
6
7
namespace
stan
{
8
namespace
math {
9
13
template
<
typename
T_n,
typename
T_location,
typename
T_precision>
14
return_type_t<T_location, T_precision>
neg_binomial_2_ccdf_log
(
15
const
T_n& n,
const
T_location& mu,
const
T_precision& phi) {
16
return
neg_binomial_2_lccdf<T_n, T_location, T_precision>(n, mu, phi);
17
}
18
19
}
// namespace math
20
}
// namespace stan
21
#endif
stan::math::neg_binomial_2_ccdf_log
return_type_t< T_location, T_precision > neg_binomial_2_ccdf_log(const T_n &n, const T_location &mu, const T_precision &phi)
Definition
neg_binomial_2_ccdf_log.hpp:14
stan::return_type_t
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
Definition
return_type.hpp:218
stan
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Definition
unit_vector_constrain.hpp:15
neg_binomial_2_lccdf.hpp
meta.hpp
stan
math
prim
prob
neg_binomial_2_ccdf_log.hpp
[
Stan Home Page
]
© 2011–2019, Stan Development Team.