Stan Math Library
4.9.0
Automatic Differentiation
|
The inverse hyperbolic sine function for variables (C99).
The derivative is defined by
\(\frac{d}{dx} \mbox{asinh}(x) = \frac{x}{x^2 + 1}\).
\[ \mbox{asinh}(x) = \begin{cases} \sinh^{-1}(x) & \mbox{if } -\infty\leq x \leq \infty \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]
\[ \frac{\partial\, \mbox{asinh}(x)}{\partial x} = \begin{cases} \frac{\partial\, \sinh^{-1}(x)}{\partial x} & \mbox{if } -\infty\leq x\leq \infty \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]
\[ \sinh^{-1}(x)=\ln\left(x+\sqrt{x^2+1}\right) \]
\[ \frac{\partial \, \sinh^{-1}(x)}{\partial x} = \frac{1}{\sqrt{x^2+1}} \]
x | The variable. |