Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
Returns a Matern exponential cross covariance matrix.
\[ k(x, x') = \sigma^2 exp(-\frac{d(x, x')}{l}) \]
where d(x, x') is the Euclidean distance This function is for the cross covariance matrix needed to compute the posterior predictive distribution
T_x1 | first type of scalars contained in vector x1 |
T_x2 | second type of scalars contained in vector x2 |
T_s | type of parameter sigma, marginal standard deviation |
T_l | type of parameter length scale |
x1 | std::vector of scalars that can be used in squared_distance |
x2 | std::vector of scalars that can be used in squared_distance |
length_scale | length scale |
sigma | standard deviation that can be used in stan::math::square |
std::domain | error if sigma <= 0, l <= 0, or x1, x2 are nan or inf |
Definition at line 171 of file gp_exponential_cov.hpp.