Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ read_cov_L() [2/2]

template<typename T_CPCs , typename T_sds , require_any_var_vector_t< T_CPCs, T_sds > * = nullptr, require_vt_same< T_CPCs, T_sds > * = nullptr>
auto stan::math::read_cov_L ( const T_CPCs &  CPCs,
const T_sds &  sds,
scalar_type_t< T_CPCs > &  log_prob 
)
inline

This is the function that should be called prior to evaluating the density of any elliptical distribution.

Template Parameters
T_CPCstype of CPCs vector (must be a var_value<T> where T inherits from EigenBase)
T_sdstype of sds vector (must be a var_value<T> where T inherits from EigenBase)
Parameters
CPCson (-1, 1)
sdson (0, inf)
log_probthe log probability value to increment with the Jacobian
Returns
Cholesky factor of covariance matrix for specified partial correlations.

Definition at line 32 of file read_cov_L.hpp.