Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
\[ \mbox{modified\_bessel\_first\_kind}(v, z) = \begin{cases} I_v(z) & \mbox{if } -\infty\leq z \leq \infty \\[6pt] \textrm{error} & \mbox{if } z = \textrm{NaN} \end{cases} \]
\[ \frac{\partial\, \mbox{modified\_bessel\_first\_kind}(v, z)}{\partial z} = \begin{cases} \frac{\partial\, I_v(z)}{\partial z} & \mbox{if } -\infty\leq z\leq \infty \\[6pt] \textrm{error} & \mbox{if } z = \textrm{NaN} \end{cases} \]
\[ {I_v}(z) = \left(\frac{1}{2}z\right)^v\sum_{k=0}^\infty \frac{\left(\frac{1}{4}z^2\right)^k}{k!\Gamma(v+k+1)} \]
\[ \frac{\partial \, I_v(z)}{\partial z} = I_{v-1}(z)-\frac{v}{z}I_v(z) \]
Definition at line 38 of file modified_bessel_first_kind.hpp.