Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ autocovariance() [4/4]

template<typename T , typename DerivedA , typename DerivedB >
void stan::math::autocovariance ( const Eigen::MatrixBase< DerivedA > &  y,
Eigen::MatrixBase< DerivedB > &  acov 
)

Write autocovariance estimates for every lag for the specified input sequence into the specified result.

The return vector be resized to the same length as the input sequence with lags given by array index.

The implementation involves a fast Fourier transform, followed by a normalization, followed by an inverse transform.

This method is just a light wrapper around the three-argument autocovariance function

Template Parameters
Tscalar type
DerivedAtype of the first matrix
DerivedBtype of the second matrix
Parameters
yInput sequence.
acovAutocovariances.

Definition at line 118 of file autocovariance.hpp.